Partial coherence and frustration in self-organizing spherical grids
Stella F, Urdapilleta E, Luo Y, Treves A. 2020. Partial coherence and frustration in self-organizing spherical grids. Hippocampus. 30(4), 302–313.
Download
Journal Article
| Published
| English
Scopus indexed
Author
Stella, FedericoISTA ;
Urdapilleta, Eugenio;
Luo, Yifan;
Treves, Alessandro
Department
Abstract
Nearby grid cells have been observed to express a remarkable degree of long-rangeorder, which is often idealized as extending potentially to infinity. Yet their strict peri-odic firing and ensemble coherence are theoretically possible only in flat environments, much unlike the burrows which rodents usually live in. Are the symmetrical, coherent grid maps inferred in the lab relevant to chart their way in their natural habitat? We consider spheres as simple models of curved environments and waiting for the appropriate experiments to be performed, we use our adaptation model to predict what grid maps would emerge in a network with the same type of recurrent connections, which on the plane produce coherence among the units. We find that on the sphere such connections distort the maps that single grid units would express on their own, and aggregate them into clusters. When remapping to a different spherical environment, units in each cluster maintain only partial coherence, similar to what is observed in disordered materials, such as spin glasses.
Publishing Year
Date Published
2020-04-01
Journal Title
Hippocampus
Volume
30
Issue
4
Page
302-313
ISSN
eISSN
IST-REx-ID
Cite this
Stella F, Urdapilleta E, Luo Y, Treves A. Partial coherence and frustration in self-organizing spherical grids. Hippocampus. 2020;30(4):302-313. doi:10.1002/hipo.23144
Stella, F., Urdapilleta, E., Luo, Y., & Treves, A. (2020). Partial coherence and frustration in self-organizing spherical grids. Hippocampus. Wiley. https://doi.org/10.1002/hipo.23144
Stella, Federico, Eugenio Urdapilleta, Yifan Luo, and Alessandro Treves. “Partial Coherence and Frustration in Self-Organizing Spherical Grids.” Hippocampus. Wiley, 2020. https://doi.org/10.1002/hipo.23144.
F. Stella, E. Urdapilleta, Y. Luo, and A. Treves, “Partial coherence and frustration in self-organizing spherical grids,” Hippocampus, vol. 30, no. 4. Wiley, pp. 302–313, 2020.
Stella F, Urdapilleta E, Luo Y, Treves A. 2020. Partial coherence and frustration in self-organizing spherical grids. Hippocampus. 30(4), 302–313.
Stella, Federico, et al. “Partial Coherence and Frustration in Self-Organizing Spherical Grids.” Hippocampus, vol. 30, no. 4, Wiley, 2020, pp. 302–13, doi:10.1002/hipo.23144.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
2019_Hippocampus_Stella.pdf
2.37 MB
Access Level
Open Access
Date Uploaded
2019-08-12
MD5 Checksum
7b54d22bfbfc0d1188a9ea24d985bfb2
Export
Marked PublicationsOpen Data ISTA Research Explorer
Web of Science
View record in Web of Science®Sources
PMID: 31339190
PubMed | Europe PMC