Emergent gene expression responses to drug combinations predict higher-order drug interactions

Lukacisin M, Bollenbach MT. 2019. Emergent gene expression responses to drug combinations predict higher-order drug interactions. Cell Systems. 9(5), 423-433.e1-e3.

Download
OA 2019_CellSystems_Lukacisin.pdf 4.24 MB [Published Version]

Journal Article | Published | English

Scopus indexed
Department
Abstract
Effective design of combination therapies requires understanding the changes in cell physiology that result from drug interactions. Here, we show that the genome-wide transcriptional response to combinations of two drugs, measured at a rigorously controlled growth rate, can predict higher-order antagonism with a third drug in Saccharomyces cerevisiae. Using isogrowth profiling, over 90% of the variation in cellular response can be decomposed into three principal components (PCs) that have clear biological interpretations. We demonstrate that the third PC captures emergent transcriptional programs that are dependent on both drugs and can predict antagonism with a third drug targeting the emergent pathway. We further show that emergent gene expression patterns are most pronounced at a drug ratio where the drug interaction is strongest, providing a guideline for future measurements. Our results provide a readily applicable recipe for uncovering emergent responses in other systems and for higher-order drug combinations. A record of this paper’s transparent peer review process is included in the Supplemental Information.
Publishing Year
Date Published
2019-11-27
Journal Title
Cell Systems
Acknowledged SSUs
Volume
9
Issue
5
Page
423-433.e1-e3
ISSN
IST-REx-ID

Cite this

Lukacisin M, Bollenbach MT. Emergent gene expression responses to drug combinations predict higher-order drug interactions. Cell Systems. 2019;9(5):423-433.e1-e3. doi:10.1016/j.cels.2019.10.004
Lukacisin, M., & Bollenbach, M. T. (2019). Emergent gene expression responses to drug combinations predict higher-order drug interactions. Cell Systems. Cell Press. https://doi.org/10.1016/j.cels.2019.10.004
Lukacisin, Martin, and Mark Tobias Bollenbach. “Emergent Gene Expression Responses to Drug Combinations Predict Higher-Order Drug Interactions.” Cell Systems. Cell Press, 2019. https://doi.org/10.1016/j.cels.2019.10.004.
M. Lukacisin and M. T. Bollenbach, “Emergent gene expression responses to drug combinations predict higher-order drug interactions,” Cell Systems, vol. 9, no. 5. Cell Press, pp. 423-433.e1-e3, 2019.
Lukacisin M, Bollenbach MT. 2019. Emergent gene expression responses to drug combinations predict higher-order drug interactions. Cell Systems. 9(5), 423-433.e1-e3.
Lukacisin, Martin, and Mark Tobias Bollenbach. “Emergent Gene Expression Responses to Drug Combinations Predict Higher-Order Drug Interactions.” Cell Systems, vol. 9, no. 5, Cell Press, 2019, pp. 423-433.e1-e3, doi:10.1016/j.cels.2019.10.004.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2019-11-15
MD5 Checksum
7a11d6c2f9523d65b049512d61733178


Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Search this title in

Google Scholar