Maximum persistency via iterative relaxed inference with graphical models
Shekhovtsov A, Swoboda P, Savchynskyy B. 2018. Maximum persistency via iterative relaxed inference with graphical models. IEEE Transactions on Pattern Analysis and Machine Intelligence. 40(7), 1668–1682.
Download (ext.)
https://arxiv.org/abs/1508.07902
[Preprint]
Journal Article
| Published
| English
Scopus indexed
Author
Shekhovtsov, Alexander;
Swoboda, PaulISTA;
Savchynskyy, Bogdan
Corresponding author has ISTA affiliation
Department
Abstract
We consider the NP-hard problem of MAP-inference for undirected discrete graphical models. We propose a polynomial time and practically efficient algorithm for finding a part of its optimal solution. Specifically, our algorithm marks some labels of the considered graphical model either as (i) optimal, meaning that they belong to all optimal solutions of the inference problem; (ii) non-optimal if they provably do not belong to any solution. With access to an exact solver of a linear programming relaxation to the MAP-inference problem, our algorithm marks the maximal possible (in a specified sense) number of labels. We also present a version of the algorithm, which has access to a suboptimal dual solver only and still can ensure the (non-)optimality for the marked labels, although the overall number of the marked labels may decrease. We propose an efficient implementation, which runs in time comparable to a single run of a suboptimal dual solver. Our method is well-scalable and shows state-of-the-art results on computational benchmarks from machine learning and computer vision.
Publishing Year
Date Published
2018-07-01
Journal Title
IEEE Transactions on Pattern Analysis and Machine Intelligence
Publisher
IEEE
Volume
40
Issue
7
Page
1668-1682
ISSN
IST-REx-ID
Cite this
Shekhovtsov A, Swoboda P, Savchynskyy B. Maximum persistency via iterative relaxed inference with graphical models. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2018;40(7):1668-1682. doi:10.1109/TPAMI.2017.2730884
Shekhovtsov, A., Swoboda, P., & Savchynskyy, B. (2018). Maximum persistency via iterative relaxed inference with graphical models. IEEE Transactions on Pattern Analysis and Machine Intelligence. IEEE. https://doi.org/10.1109/TPAMI.2017.2730884
Shekhovtsov, Alexander, Paul Swoboda, and Bogdan Savchynskyy. “Maximum Persistency via Iterative Relaxed Inference with Graphical Models.” IEEE Transactions on Pattern Analysis and Machine Intelligence. IEEE, 2018. https://doi.org/10.1109/TPAMI.2017.2730884.
A. Shekhovtsov, P. Swoboda, and B. Savchynskyy, “Maximum persistency via iterative relaxed inference with graphical models,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 7. IEEE, pp. 1668–1682, 2018.
Shekhovtsov A, Swoboda P, Savchynskyy B. 2018. Maximum persistency via iterative relaxed inference with graphical models. IEEE Transactions on Pattern Analysis and Machine Intelligence. 40(7), 1668–1682.
Shekhovtsov, Alexander, et al. “Maximum Persistency via Iterative Relaxed Inference with Graphical Models.” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 7, IEEE, 2018, pp. 1668–82, doi:10.1109/TPAMI.2017.2730884.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Open Access
Export
Marked PublicationsOpen Data ISTA Research Explorer
Sources
arXiv 1508.07902