Thermo-sensitive alternative splicing of FLOWERING LOCUS M is modulated by cyclin-dependent kinase G2
Nibau C, Gallemi M, Dadarou D, Doonan JH, Cavallari N. 2020. Thermo-sensitive alternative splicing of FLOWERING LOCUS M is modulated by cyclin-dependent kinase G2. Frontiers in Plant Science. 10, 1680.
Download
Journal Article
| Published
| English
Scopus indexed
Author
Nibau, Candida;
Gallemi Rovira, MarcalISTA ;
Dadarou, Despoina;
Doonan, John H.;
Cavallari, NicolaISTA
Corresponding author has ISTA affiliation
Department
Abstract
The ability to sense environmental temperature and to coordinate growth and development accordingly, is critical to the reproductive success of plants. Flowering time is regulated at the level of gene expression by a complex network of factors that integrate environmental and developmental cues. One of the main players, involved in modulating flowering time in response to changes in ambient temperature is FLOWERING LOCUS M (FLM). FLM transcripts can undergo extensive alternative splicing producing multiple variants, of which FLM-β and FLM-δ are the most representative. While FLM-β codes for the flowering repressor FLM protein, translation of FLM-δ has the opposite effect on flowering. Here we show that the cyclin-dependent kinase G2 (CDKG2), together with its cognate cyclin, CYCLYN L1 (CYCL1) affects the alternative splicing of FLM, balancing the levels of FLM-β and FLM-δ across the ambient temperature range. In the absence of the CDKG2/CYCL1 complex, FLM-β expression is reduced while FLM-δ is increased in a temperature dependent manner and these changes are associated with an early flowering phenotype in the cdkg2 mutant lines. In addition, we found that transcript variants retaining the full FLM intron 1 are sequestered in the cell nucleus. Strikingly, FLM intron 1 splicing is also regulated by CDKG2/CYCL1. Our results provide evidence that temperature and CDKs regulate the alternative splicing of FLM, contributing to flowering time definition.
Publishing Year
Date Published
2020-01-22
Journal Title
Frontiers in Plant Science
Publisher
Frontiers Media
Volume
10
Article Number
1680
ISSN
IST-REx-ID
Cite this
Nibau C, Gallemi M, Dadarou D, Doonan JH, Cavallari N. Thermo-sensitive alternative splicing of FLOWERING LOCUS M is modulated by cyclin-dependent kinase G2. Frontiers in Plant Science. 2020;10. doi:10.3389/fpls.2019.01680
Nibau, C., Gallemi, M., Dadarou, D., Doonan, J. H., & Cavallari, N. (2020). Thermo-sensitive alternative splicing of FLOWERING LOCUS M is modulated by cyclin-dependent kinase G2. Frontiers in Plant Science. Frontiers Media. https://doi.org/10.3389/fpls.2019.01680
Nibau, Candida, Marçal Gallemi, Despoina Dadarou, John H. Doonan, and Nicola Cavallari. “Thermo-Sensitive Alternative Splicing of FLOWERING LOCUS M Is Modulated by Cyclin-Dependent Kinase G2.” Frontiers in Plant Science. Frontiers Media, 2020. https://doi.org/10.3389/fpls.2019.01680.
C. Nibau, M. Gallemi, D. Dadarou, J. H. Doonan, and N. Cavallari, “Thermo-sensitive alternative splicing of FLOWERING LOCUS M is modulated by cyclin-dependent kinase G2,” Frontiers in Plant Science, vol. 10. Frontiers Media, 2020.
Nibau C, Gallemi M, Dadarou D, Doonan JH, Cavallari N. 2020. Thermo-sensitive alternative splicing of FLOWERING LOCUS M is modulated by cyclin-dependent kinase G2. Frontiers in Plant Science. 10, 1680.
Nibau, Candida, et al. “Thermo-Sensitive Alternative Splicing of FLOWERING LOCUS M Is Modulated by Cyclin-Dependent Kinase G2.” Frontiers in Plant Science, vol. 10, 1680, Frontiers Media, 2020, doi:10.3389/fpls.2019.01680.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
Access Level
Open Access
Date Uploaded
2020-01-27
MD5 Checksum
d1f92e60a713fbd15097ce895e5c7ccb
Export
Marked PublicationsOpen Data ISTA Research Explorer