Influence of the ligand stripping on the transport properties of nanoparticle-based PbSe nanomaterials

Cadavid D, Ortega S, Illera S, Liu Y, Ibáñez M, Shavel A, Zhang Y, Li M, López AM, Noriega G, Durá OJ, López De La Torre MA, Prades JD, Cabot A. 2020. Influence of the ligand stripping on the transport properties of nanoparticle-based PbSe nanomaterials. ACS Applied Energy Materials. 3(3), 2120–2129.

Download
OA 2020_ACSAppliedEnergyMat_Cadavid.pdf 6.42 MB

Journal Article | Published | English

Scopus indexed
Author
Cadavid, Doris; Ortega, Silvia; Illera, Sergio; Liu, YuISTA ; Ibáñez , MariaISTA ; Shavel, Alexey; Zhang, Yu; Li, Mengyao; López, Antonio M.; Noriega, Germán; Durá, Oscar Juan; López De La Torre, M. A.
All
Department
Abstract
Nanomaterials produced from the bottom-up assembly of nanocrystals may incorporate ∼1020–1021 cm–3 not fully coordinated surface atoms, i.e., ∼1020–1021 cm–3 potential donor or acceptor states that can strongly affect transport properties. Therefore, to exploit the full potential of nanocrystal building blocks to produce functional nanomaterials and thin films, a proper control of their surface chemistry is required. Here, we analyze how the ligand stripping procedure influences the charge and heat transport properties of sintered PbSe nanomaterials produced from the bottom-up assembly of colloidal PbSe nanocrystals. First, we show that the removal of the native organic ligands by thermal decomposition in an inert atmosphere leaves relatively large amounts of carbon at the crystal interfaces. This carbon blocks crystal growth during consolidation and at the same time hampers charge and heat transport through the final nanomaterial. Second, we demonstrate that, by stripping ligands from the nanocrystal surface before consolidation, nanomaterials with larger crystal domains, lower porosity, and higher charge carrier concentrations are obtained, thus resulting in nanomaterials with higher electrical and thermal conductivities. In addition, the ligand displacement leaves the nanocrystal surface unprotected, facilitating oxidation and chalcogen evaporation. The influence of the ligand displacement on the nanomaterial charge transport properties is rationalized here using a two-band model based on the standard Boltzmann transport equation with the relaxation time approximation. Finally, we present an application of the produced functional nanomaterials by modeling, fabricating, and testing a simple PbSe-based thermoelectric device with a ring geometry.
Publishing Year
Date Published
2020-03-01
Journal Title
ACS Applied Energy Materials
Acknowledgement
This work was supported by the Spanish Ministerio de Economía y Competitividad through the project SEHTOP (ENE2016-77798-C4-3-R) and the Generalitat de Catalunya through the project 2017SGR1246. D.C. acknowledges support from Universidad Nacional de Colombia. Y.L. acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 754411. M.I. acknowledges financial support from IST Austria.
Volume
3
Issue
3
Page
2120-2129
eISSN
IST-REx-ID

Cite this

Cadavid D, Ortega S, Illera S, et al. Influence of the ligand stripping on the transport properties of nanoparticle-based PbSe nanomaterials. ACS Applied Energy Materials. 2020;3(3):2120-2129. doi:10.1021/acsaem.9b02137
Cadavid, D., Ortega, S., Illera, S., Liu, Y., Ibáñez, M., Shavel, A., … Cabot, A. (2020). Influence of the ligand stripping on the transport properties of nanoparticle-based PbSe nanomaterials. ACS Applied Energy Materials. American Chemical Society. https://doi.org/10.1021/acsaem.9b02137
Cadavid, Doris, Silvia Ortega, Sergio Illera, Yu Liu, Maria Ibáñez, Alexey Shavel, Yu Zhang, et al. “Influence of the Ligand Stripping on the Transport Properties of Nanoparticle-Based PbSe Nanomaterials.” ACS Applied Energy Materials. American Chemical Society, 2020. https://doi.org/10.1021/acsaem.9b02137.
D. Cadavid et al., “Influence of the ligand stripping on the transport properties of nanoparticle-based PbSe nanomaterials,” ACS Applied Energy Materials, vol. 3, no. 3. American Chemical Society, pp. 2120–2129, 2020.
Cadavid D, Ortega S, Illera S, Liu Y, Ibáñez M, Shavel A, Zhang Y, Li M, López AM, Noriega G, Durá OJ, López De La Torre MA, Prades JD, Cabot A. 2020. Influence of the ligand stripping on the transport properties of nanoparticle-based PbSe nanomaterials. ACS Applied Energy Materials. 3(3), 2120–2129.
Cadavid, Doris, et al. “Influence of the Ligand Stripping on the Transport Properties of Nanoparticle-Based PbSe Nanomaterials.” ACS Applied Energy Materials, vol. 3, no. 3, American Chemical Society, 2020, pp. 2120–29, doi:10.1021/acsaem.9b02137.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Main File(s)
Access Level
OA Open Access
Date Uploaded
2022-08-23
MD5 Checksum
f23be731a766a480c77c962c1380315c


Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Search this title in

Google Scholar