High temporal resolution reveals simultaneous plasma membrane recruitment of TPLATE complex subunits

Wang J, Mylle E, Johnson AJ, Besbrugge N, De Jaeger G, Friml J, Pleskot R, van Damme D. 2020. High temporal resolution reveals simultaneous plasma membrane recruitment of TPLATE complex subunits. Plant Physiology. 183(3), 986–997.

Download (ext.)

Journal Article | Published | English

Scopus indexed
Author
Wang, J; Mylle, E; Johnson, Alexander JISTA ; Besbrugge, N; De Jaeger, G; Friml, JiríISTA ; Pleskot, R; van Damme, D
Department
Abstract
The TPLATE complex (TPC) is a key endocytic adaptor protein complex in plants. TPC in Arabidopsis (Arabidopsis thaliana) contains six evolutionarily conserved subunits and two plant-specific subunits, AtEH1/Pan1 and AtEH2/Pan1, although cytoplasmic proteins are not associated with the hexameric subcomplex in the cytoplasm. To investigate the dynamic assembly of the octameric TPC at the plasma membrane (PM), we performed state-of-the-art dual-color live cell imaging at physiological and lowered temperatures. Lowering the temperature slowed down endocytosis, thereby enhancing the temporal resolution of the differential recruitment of endocytic components. Under both normal and lowered temperature conditions, the core TPC subunit TPLATE and the AtEH/Pan1 proteins exhibited simultaneous recruitment at the PM. These results, together with co-localization analysis of different TPC subunits, allow us to conclude that TPC in plant cells is not recruited to the PM sequentially but as an octameric complex.
Publishing Year
Date Published
2020-07-01
Journal Title
Plant Physiology
Publisher
American Society of Plant Biologists
Volume
183
Issue
3
Page
986-997
ISSN
eISSN
IST-REx-ID

Cite this

Wang J, Mylle E, Johnson AJ, et al. High temporal resolution reveals simultaneous plasma membrane recruitment of TPLATE complex subunits. Plant Physiology. 2020;183(3):986-997. doi:10.1104/pp.20.00178
Wang, J., Mylle, E., Johnson, A. J., Besbrugge, N., De Jaeger, G., Friml, J., … van Damme, D. (2020). High temporal resolution reveals simultaneous plasma membrane recruitment of TPLATE complex subunits. Plant Physiology. American Society of Plant Biologists. https://doi.org/10.1104/pp.20.00178
Wang, J, E Mylle, Alexander J Johnson, N Besbrugge, G De Jaeger, Jiří Friml, R Pleskot, and D van Damme. “High Temporal Resolution Reveals Simultaneous Plasma Membrane Recruitment of TPLATE Complex Subunits.” Plant Physiology. American Society of Plant Biologists, 2020. https://doi.org/10.1104/pp.20.00178.
J. Wang et al., “High temporal resolution reveals simultaneous plasma membrane recruitment of TPLATE complex subunits,” Plant Physiology, vol. 183, no. 3. American Society of Plant Biologists, pp. 986–997, 2020.
Wang J, Mylle E, Johnson AJ, Besbrugge N, De Jaeger G, Friml J, Pleskot R, van Damme D. 2020. High temporal resolution reveals simultaneous plasma membrane recruitment of TPLATE complex subunits. Plant Physiology. 183(3), 986–997.
Wang, J., et al. “High Temporal Resolution Reveals Simultaneous Plasma Membrane Recruitment of TPLATE Complex Subunits.” Plant Physiology, vol. 183, no. 3, American Society of Plant Biologists, 2020, pp. 986–97, doi:10.1104/pp.20.00178.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Sources

PMID: 32321842
PubMed | Europe PMC

Search this title in

Google Scholar