Motor primitives in space and time via targeted gain modulation in cortical networks

Stroud JP, Porter MA, Hennequin G, Vogels TP. 2018. Motor primitives in space and time via targeted gain modulation in cortical networks. Nature Neuroscience. 21(12), 1774–1783.


Journal Article | Published | English
Author
Stroud, Jake P.; Porter, Mason A.; Hennequin, Guillaume; Vogels, Tim PISTA
Abstract
Motor cortex (M1) exhibits a rich repertoire of neuronal activities to support the generation of complex movements. Although recent neuronal-network models capture many qualitative aspects of M1 dynamics, they can generate only a few distinct movements. Additionally, it is unclear how M1 efficiently controls movements over a wide range of shapes and speeds. We demonstrate that modulation of neuronal input–output gains in recurrent neuronal-network models with a fixed architecture can dramatically reorganize neuronal activity and thus downstream muscle outputs. Consistent with the observation of diffuse neuromodulatory projections to M1, a relatively small number of modulatory control units provide sufficient flexibility to adjust high-dimensional network activity using a simple reward-based learning rule. Furthermore, it is possible to assemble novel movements from previously learned primitives, and one can separately change movement speed while preserving movement shape. Our results provide a new perspective on the role of modulatory systems in controlling recurrent cortical activity.
Publishing Year
Date Published
2018-12-01
Journal Title
Nature Neuroscience
Volume
21
Issue
12
Page
1774-1783
IST-REx-ID

Cite this

Stroud JP, Porter MA, Hennequin G, Vogels TP. Motor primitives in space and time via targeted gain modulation in cortical networks. Nature Neuroscience. 2018;21(12):1774-1783. doi:10.1038/s41593-018-0276-0
Stroud, J. P., Porter, M. A., Hennequin, G., & Vogels, T. P. (2018). Motor primitives in space and time via targeted gain modulation in cortical networks. Nature Neuroscience. Springer Nature. https://doi.org/10.1038/s41593-018-0276-0
Stroud, Jake P., Mason A. Porter, Guillaume Hennequin, and Tim P Vogels. “Motor Primitives in Space and Time via Targeted Gain Modulation in Cortical Networks.” Nature Neuroscience. Springer Nature, 2018. https://doi.org/10.1038/s41593-018-0276-0.
J. P. Stroud, M. A. Porter, G. Hennequin, and T. P. Vogels, “Motor primitives in space and time via targeted gain modulation in cortical networks,” Nature Neuroscience, vol. 21, no. 12. Springer Nature, pp. 1774–1783, 2018.
Stroud JP, Porter MA, Hennequin G, Vogels TP. 2018. Motor primitives in space and time via targeted gain modulation in cortical networks. Nature Neuroscience. 21(12), 1774–1783.
Stroud, Jake P., et al. “Motor Primitives in Space and Time via Targeted Gain Modulation in Cortical Networks.” Nature Neuroscience, vol. 21, no. 12, Springer Nature, 2018, pp. 1774–83, doi:10.1038/s41593-018-0276-0.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access
External material:
Erratum

Export

Marked Publications

Open Data ISTA Research Explorer

Sources

PMID: 30482949
PubMed | Europe PMC

Search this title in

Google Scholar