Selective routing of spatial information flow from input to output in hippocampal granule cells

Zhang X, Schlögl A, Jonas PM. 2020. Selective routing of spatial information flow from input to output in hippocampal granule cells. Neuron. 107(6), 1212–1225.

Download
OA 2020_Neuron_Zhang.pdf 3.01 MB [Published Version]

Journal Article | Published | English

Scopus indexed

Corresponding author has ISTA affiliation

Abstract
Dentate gyrus granule cells (GCs) connect the entorhinal cortex to the hippocampal CA3 region, but how they process spatial information remains enigmatic. To examine the role of GCs in spatial coding, we measured excitatory postsynaptic potentials (EPSPs) and action potentials (APs) in head-fixed mice running on a linear belt. Intracellular recording from morphologically identified GCs revealed that most cells were active, but activity level varied over a wide range. Whereas only ∼5% of GCs showed spatially tuned spiking, ∼50% received spatially tuned input. Thus, the GC population broadly encodes spatial information, but only a subset relays this information to the CA3 network. Fourier analysis indicated that GCs received conjunctive place-grid-like synaptic input, suggesting code conversion in single neurons. GC firing was correlated with dendritic complexity and intrinsic excitability, but not extrinsic excitatory input or dendritic cable properties. Thus, functional maturation may control input-output transformation and spatial code conversion.
Publishing Year
Date Published
2020-09-23
Journal Title
Neuron
Publisher
Elsevier
Acknowledgement
This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement 692692, P.J.) and the Fond zur Förderung der Wissenschaftlichen Forschung (Z 312-B27, Wittgenstein award, P.J.). We thank Gyorgy Buzsáki, Jozsef Csicsvari, Juan Ramirez Villegas, and Federico Stella for commenting on earlier versions of this manuscript. We also thank Katie Bittner, Michael Brecht, Albert Lee, Jeffery Magee, and Alejandro Pernía-Andrade for sharing expertise in in vivo patch-clamp recording. We are grateful to Florian Marr for cell labeling, cell reconstruction, and technical assistance; Ben Suter for helpful discussions; Christina Altmutter for technical support; Eleftheria Kralli-Beller for manuscript editing; and Todor Asenov (Machine Shop) for device construction. We also thank the Scientific Service Units (SSUs) of IST Austria (Machine Shop, Scientific Computing, and Preclinical Facility) for efficient support.
Volume
107
Issue
6
Page
1212-1225
ISSN
IST-REx-ID

Cite this

Zhang X, Schlögl A, Jonas PM. Selective routing of spatial information flow from input to output in hippocampal granule cells. Neuron. 2020;107(6):1212-1225. doi:10.1016/j.neuron.2020.07.006
Zhang, X., Schlögl, A., & Jonas, P. M. (2020). Selective routing of spatial information flow from input to output in hippocampal granule cells. Neuron. Elsevier. https://doi.org/10.1016/j.neuron.2020.07.006
Zhang, Xiaomin, Alois Schlögl, and Peter M Jonas. “Selective Routing of Spatial Information Flow from Input to Output in Hippocampal Granule Cells.” Neuron. Elsevier, 2020. https://doi.org/10.1016/j.neuron.2020.07.006.
X. Zhang, A. Schlögl, and P. M. Jonas, “Selective routing of spatial information flow from input to output in hippocampal granule cells,” Neuron, vol. 107, no. 6. Elsevier, pp. 1212–1225, 2020.
Zhang X, Schlögl A, Jonas PM. 2020. Selective routing of spatial information flow from input to output in hippocampal granule cells. Neuron. 107(6), 1212–1225.
Zhang, Xiaomin, et al. “Selective Routing of Spatial Information Flow from Input to Output in Hippocampal Granule Cells.” Neuron, vol. 107, no. 6, Elsevier, 2020, pp. 1212–25, doi:10.1016/j.neuron.2020.07.006.
All files available under the following license(s):
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0):
Main File(s)
File Name
Access Level
OA Open Access
Date Uploaded
2020-12-04
MD5 Checksum
44a5960fc083a4cb3488d22224859fdc


External material:
Press Release
Description
News on IST Website

Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Sources

PMID: 32763145
PubMed | Europe PMC

Search this title in

Google Scholar