Illuminating the role of Cul3 in autism spectrum disorder pathogenesis

Morandell J. 2020. Illuminating the role of Cul3 in autism spectrum disorder pathogenesis. Institute of Science and Technology Austria.

Download
OA Jasmin_Morandell_Thesis-2020_final.pdf 16.16 MB

Thesis | PhD | Published | English
Supervisor
Department
Series Title
ISTA Thesis
Abstract
The development of the human brain occurs through a tightly regulated series of dynamic and adaptive processes during prenatal and postnatal life. A disruption of this strictly orchestrated series of events can lead to a number of neurodevelopmental conditions, including Autism Spectrum Disorders (ASDs). ASDs are a very common, etiologically and phenotypically heterogeneous group of disorders sharing the core symptoms of social interaction and communication deficits and restrictive and repetitive interests and behaviors. They are estimated to affect one in 59 individuals in the U.S. and, over the last three decades, mutations in more than a hundred genetic loci have been convincingly linked to ASD pathogenesis. Yet, for the vast majority of these ASD-risk genes their role during brain development and precise molecular function still remain elusive. De novo loss of function mutations in the ubiquitin ligase-encoding gene Cullin 3 (CUL3) lead to ASD. In the study described here, we used Cul3 mouse models to evaluate the consequences of Cul3 mutations in vivo. Our results show that Cul3 heterozygous knockout mice exhibit deficits in motor coordination as well as ASD-relevant social and cognitive impairments. Cul3+/-, Cul3+/fl Emx1-Cre and Cul3fl/fl Emx1-Cre mutant brains display cortical lamination abnormalities due to defective migration of post-mitotic excitatory neurons, as well as reduced numbers of excitatory and inhibitory neurons. In line with the observed abnormal cortical organization, Cul3 heterozygous deletion is associated with decreased spontaneous excitatory and inhibitory activity in the cortex. At the molecular level we show that Cul3 regulates cytoskeletal and adhesion protein abundance in the mouse embryonic cortex. Abnormal regulation of cytoskeletal proteins in Cul3 mutant neural cells results in atypical organization of the actin mesh at the cell leading edge. Of note, heterozygous deletion of Cul3 in adult mice does not induce the majority of the behavioral defects observed in constitutive Cul3 haploinsufficient animals, pointing to a critical time-window for Cul3 deficiency. In conclusion, our data indicate that Cul3 plays a critical role in the regulation of cytoskeletal proteins and neuronal migration. ASD-associated defects and behavioral abnormalities are primarily due to dosage sensitive Cul3 functions at early brain developmental stages.
Publishing Year
Date Published
2020-10-12
Acknowledgement
I would like to especially thank Armel Nicolas from the Proteomics and Christoph Sommer from the Bioimaging Facilities for the data analysis, and to thank the team of the Preclinical Facility, especially Sabina Deixler, Angela Schlerka, Anita Lepold, Mihalea Mihai and Michael Schun for taking care of the mouse line maintenance and their great support.
Page
138
ISSN
IST-REx-ID

Cite this

Morandell J. Illuminating the role of Cul3 in autism spectrum disorder pathogenesis. 2020. doi:10.15479/AT:ISTA:8620
Morandell, J. (2020). Illuminating the role of Cul3 in autism spectrum disorder pathogenesis. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:8620
Morandell, Jasmin. “Illuminating the Role of Cul3 in Autism Spectrum Disorder Pathogenesis.” Institute of Science and Technology Austria, 2020. https://doi.org/10.15479/AT:ISTA:8620.
J. Morandell, “Illuminating the role of Cul3 in autism spectrum disorder pathogenesis,” Institute of Science and Technology Austria, 2020.
Morandell J. 2020. Illuminating the role of Cul3 in autism spectrum disorder pathogenesis. Institute of Science and Technology Austria.
Morandell, Jasmin. Illuminating the Role of Cul3 in Autism Spectrum Disorder Pathogenesis. Institute of Science and Technology Austria, 2020, doi:10.15479/AT:ISTA:8620.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Main File(s)
Access Level
OA Open Access
Date Uploaded
2020-10-07
Embargo End Date
2021-10-15
MD5 Checksum
7ee83e42de3e5ce2fedb44dff472f75f

Source File
Access Level
Restricted Closed Access
Date Uploaded
2020-10-07
MD5 Checksum
5e0464af453734210ce7aab7b4a92e3a

Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar