Triangulating submanifolds: An elementary and quantified version of Whitney’s method

Boissonnat J-D, Kachanovich S, Wintraecken M. 2021. Triangulating submanifolds: An elementary and quantified version of Whitney’s method. Discrete & Computational Geometry. 66(1), 386–434.

Download
OA 2021_DescreteCompGeopmetry_Boissonnat.pdf 983.31 KB [Published Version]

Journal Article | Published | English

Scopus indexed
Author
Boissonnat, Jean-Daniel; Kachanovich, Siargey; Wintraecken, MathijsISTA

Corresponding author has ISTA affiliation

Department
Abstract
We quantise Whitney’s construction to prove the existence of a triangulation for any C^2 manifold, so that we get an algorithm with explicit bounds. We also give a new elementary proof, which is completely geometric.
Publishing Year
Date Published
2021-07-01
Journal Title
Discrete & Computational Geometry
Publisher
Springer Nature
Acknowledgement
This work has been funded by the European Research Council under the European Union’s ERC Grant Agreement Number 339025 GUDHI (Algorithmic Foundations of Geometric Understanding in Higher Dimensions). The third author also received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 754411. Open access funding provided by the Institute of Science and Technology (IST Austria).
Volume
66
Issue
1
Page
386-434
ISSN
eISSN
IST-REx-ID

Cite this

Boissonnat J-D, Kachanovich S, Wintraecken M. Triangulating submanifolds: An elementary and quantified version of Whitney’s method. Discrete & Computational Geometry. 2021;66(1):386-434. doi:10.1007/s00454-020-00250-8
Boissonnat, J.-D., Kachanovich, S., & Wintraecken, M. (2021). Triangulating submanifolds: An elementary and quantified version of Whitney’s method. Discrete & Computational Geometry. Springer Nature. https://doi.org/10.1007/s00454-020-00250-8
Boissonnat, Jean-Daniel, Siargey Kachanovich, and Mathijs Wintraecken. “Triangulating Submanifolds: An Elementary and Quantified Version of Whitney’s Method.” Discrete & Computational Geometry. Springer Nature, 2021. https://doi.org/10.1007/s00454-020-00250-8.
J.-D. Boissonnat, S. Kachanovich, and M. Wintraecken, “Triangulating submanifolds: An elementary and quantified version of Whitney’s method,” Discrete & Computational Geometry, vol. 66, no. 1. Springer Nature, pp. 386–434, 2021.
Boissonnat J-D, Kachanovich S, Wintraecken M. 2021. Triangulating submanifolds: An elementary and quantified version of Whitney’s method. Discrete & Computational Geometry. 66(1), 386–434.
Boissonnat, Jean-Daniel, et al. “Triangulating Submanifolds: An Elementary and Quantified Version of Whitney’s Method.” Discrete & Computational Geometry, vol. 66, no. 1, Springer Nature, 2021, pp. 386–434, doi:10.1007/s00454-020-00250-8.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2021-08-06
MD5 Checksum
c848986091e56699dc12de85adb1e39c


Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Search this title in

Google Scholar