Functional innovations of PIN auxin transporters mark crucial evolutionary transitions during rise of flowering plants

Zhang Y, Rodriguez Solovey L, Li L, Zhang X, Friml J. 2020. Functional innovations of PIN auxin transporters mark crucial evolutionary transitions during rise of flowering plants. Science Advances. 6(50), eabc8895.

Download
OA 2020_ScienceAdvances_Zhang.pdf 10.58 MB [Published Version]

Journal Article | Published | English

Scopus indexed

Corresponding author has ISTA affiliation

Department
Abstract
Flowering plants display the highest diversity among plant species and have notably shaped terrestrial landscapes. Nonetheless, the evolutionary origin of their unprecedented morphological complexity remains largely an enigma. Here, we show that the coevolution of cis-regulatory and coding regions of PIN-FORMED (PIN) auxin transporters confined their expression to certain cell types and directed their subcellular localization to particular cell sides, which together enabled dynamic auxin gradients across tissues critical to the complex architecture of flowering plants. Extensive intraspecies and interspecies genetic complementation experiments with PINs from green alga up to flowering plant lineages showed that PIN genes underwent three subsequent, critical evolutionary innovations and thus acquired a triple function to regulate the development of three essential components of the flowering plant Arabidopsis: shoot/root, inflorescence, and floral organ. Our work highlights the critical role of functional innovations within the PIN gene family as essential prerequisites for the origin of flowering plants.
Publishing Year
Date Published
2020-12-11
Journal Title
Science Advances
Publisher
AAAS
Acknowledgement
We thank C.Löhne (Botanic Gardens, University of Bonn) for providing us with A. trichopoda. We would like to thank T.Han, A.Mally (IST, Austria), and C.Hartinger (University of Oxford) for constructive comment and careful reading. Funding: The research leading to these results has received funding from the European Union’s Horizon 2020 Research and Innovation Programme (ERC grant agreement number 742985), Austrian Science Fund (FWF, grant number I 3630-B25), DOC Fellowship of the Austrian Academy of Sciences, and IST Fellow program.
Volume
6
Issue
50
Article Number
eabc8895
eISSN
IST-REx-ID

Cite this

Zhang Y, Rodriguez Solovey L, Li L, Zhang X, Friml J. Functional innovations of PIN auxin transporters mark crucial evolutionary transitions during rise of flowering plants. Science Advances. 2020;6(50). doi:10.1126/sciadv.abc8895
Zhang, Y., Rodriguez Solovey, L., Li, L., Zhang, X., & Friml, J. (2020). Functional innovations of PIN auxin transporters mark crucial evolutionary transitions during rise of flowering plants. Science Advances. AAAS. https://doi.org/10.1126/sciadv.abc8895
Zhang, Yuzhou, Lesia Rodriguez Solovey, Lanxin Li, Xixi Zhang, and Jiří Friml. “Functional Innovations of PIN Auxin Transporters Mark Crucial Evolutionary Transitions during Rise of Flowering Plants.” Science Advances. AAAS, 2020. https://doi.org/10.1126/sciadv.abc8895.
Y. Zhang, L. Rodriguez Solovey, L. Li, X. Zhang, and J. Friml, “Functional innovations of PIN auxin transporters mark crucial evolutionary transitions during rise of flowering plants,” Science Advances, vol. 6, no. 50. AAAS, 2020.
Zhang Y, Rodriguez Solovey L, Li L, Zhang X, Friml J. 2020. Functional innovations of PIN auxin transporters mark crucial evolutionary transitions during rise of flowering plants. Science Advances. 6(50), eabc8895.
Zhang, Yuzhou, et al. “Functional Innovations of PIN Auxin Transporters Mark Crucial Evolutionary Transitions during Rise of Flowering Plants.” Science Advances, vol. 6, no. 50, eabc8895, AAAS, 2020, doi:10.1126/sciadv.abc8895.
All files available under the following license(s):
Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2021-01-07
MD5 Checksum
5ac2500b191c08ef6dab5327f40ff663


Material in ISTA:
Dissertation containing ISTA record

Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Sources

PMID: 33310852
PubMed | Europe PMC

Search this title in

Google Scholar