Rigidity percolation uncovers a structural basis for embryonic tissue phase transitions

Petridou N, Corominas-Murtra B, Heisenberg C-PJ, Hannezo EB. 2021. Rigidity percolation uncovers a structural basis for embryonic tissue phase transitions. Cell. 184(7), 1914–1928.e19.

Download
OA 2021_Cell_Petridou.pdf 11.41 MB [Published Version]

Journal Article | Published | English

Scopus indexed

Corresponding author has ISTA affiliation

Abstract
Embryo morphogenesis is impacted by dynamic changes in tissue material properties, which have been proposed to occur via processes akin to phase transitions (PTs). Here, we show that rigidity percolation provides a simple and robust theoretical framework to predict material/structural PTs of embryonic tissues from local cell connectivity. By using percolation theory, combined with directly monitoring dynamic changes in tissue rheology and cell contact mechanics, we demonstrate that the zebrafish blastoderm undergoes a genuine rigidity PT, brought about by a small reduction in adhesion-dependent cell connectivity below a critical value. We quantitatively predict and experimentally verify hallmarks of PTs, including power-law exponents and associated discontinuities of macroscopic observables. Finally, we show that this uniform PT depends on blastoderm cells undergoing meta-synchronous divisions causing random and, consequently, uniform changes in cell connectivity. Collectively, our theoretical and experimental findings reveal the structural basis of material PTs in an organismal context.
Publishing Year
Date Published
2021-04-01
Journal Title
Cell
Publisher
Elsevier
Acknowledgement
We thank Carl Goodrich and the members of the Heisenberg and Hannezo groups, in particular Reka Korei, for help, technical advice, and discussions; and the Bioimaging and zebrafish facilities of the IST Austria for continuous support. This work was supported by the Elise Richter Program of Austrian Science Fund (FWF) to N.I.P. ( V 736-B26 ) and the European Union (European Research Council Advanced Grant 742573 to C.-P.H. and European Research Council Starting Grant 851288 to E.H.).
Volume
184
Issue
7
Page
1914-1928.e19
ISSN
eISSN
IST-REx-ID

Cite this

Petridou N, Corominas-Murtra B, Heisenberg C-PJ, Hannezo EB. Rigidity percolation uncovers a structural basis for embryonic tissue phase transitions. Cell. 2021;184(7):1914-1928.e19. doi:10.1016/j.cell.2021.02.017
Petridou, N., Corominas-Murtra, B., Heisenberg, C.-P. J., & Hannezo, E. B. (2021). Rigidity percolation uncovers a structural basis for embryonic tissue phase transitions. Cell. Elsevier. https://doi.org/10.1016/j.cell.2021.02.017
Petridou, Nicoletta, Bernat Corominas-Murtra, Carl-Philipp J Heisenberg, and Edouard B Hannezo. “Rigidity Percolation Uncovers a Structural Basis for Embryonic Tissue Phase Transitions.” Cell. Elsevier, 2021. https://doi.org/10.1016/j.cell.2021.02.017.
N. Petridou, B. Corominas-Murtra, C.-P. J. Heisenberg, and E. B. Hannezo, “Rigidity percolation uncovers a structural basis for embryonic tissue phase transitions,” Cell, vol. 184, no. 7. Elsevier, p. 1914–1928.e19, 2021.
Petridou N, Corominas-Murtra B, Heisenberg C-PJ, Hannezo EB. 2021. Rigidity percolation uncovers a structural basis for embryonic tissue phase transitions. Cell. 184(7), 1914–1928.e19.
Petridou, Nicoletta, et al. “Rigidity Percolation Uncovers a Structural Basis for Embryonic Tissue Phase Transitions.” Cell, vol. 184, no. 7, Elsevier, 2021, p. 1914–1928.e19, doi:10.1016/j.cell.2021.02.017.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
Access Level
OA Open Access
Date Uploaded
2021-06-08
MD5 Checksum
1e5295fbd9c2a459173ec45a0e8a7c2e


External material:
Press Release
Description
News on IST Homepage

Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Sources

PMID: 33730596
PubMed | Europe PMC

Search this title in

Google Scholar