A step in the Delaunay mosaic of order k
Download
Journal Article
| Published
| English
Scopus indexed
Corresponding author has ISTA affiliation
Department
Abstract
Given a locally finite set πββπ and an integer πβ₯0, we consider the function π°π:Delπ(π)ββ on the dual of the order-k Voronoi tessellation, whose sublevel sets generalize the notion of alpha shapes from order-1 to order-k (Edelsbrunner et al. in IEEE Trans Inf Theory IT-29:551β559, 1983; Krasnoshchekov and Polishchuk in Inf Process Lett 114:76β83, 2014). While this function is not necessarily generalized discrete Morse, in the sense of Forman (Adv Math 134:90β145, 1998) and Freij (Discrete Math 309:3821β3829, 2009), we prove that it satisfies similar properties so that its increments can be meaningfully classified into critical and non-critical steps. This result extends to the case of weighted points and sheds light on k-fold covers with balls in Euclidean space.
Publishing Year
Date Published
2021-04-01
Journal Title
Journal of Geometry
Publisher
Springer Nature
Volume
112
Issue
1
Article Number
15
ISSN
eISSN
IST-REx-ID
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
2021_Geometry_Edelsbrunner.pdf
694.71 KB
Access Level

Date Uploaded
2021-06-11
MD5 Checksum
e52a832f1def52a2b23d21bcc09e646f