Local introduction and heterogeneous spatial spread of dengue-suppressing Wolbachia through an urban population of Aedes Aegypti

Schmidt T, Barton NH, Rasic G, Turley A, Montgomery B, Iturbe Ormaetxe I, Cook P, Ryan P, Ritchie S, Hoffmann A, O’Neill S, Turelli M. 2017. Local introduction and heterogeneous spatial spread of dengue-suppressing Wolbachia through an urban population of Aedes Aegypti. PLoS Biology. 15(5), e2001894.

Download
OA IST-2017-843-v1+1_journal.pbio.2001894.pdf 5.54 MB

Journal Article | Published | English

Scopus indexed
Author
Schmidt, Tom; Barton, Nick HISTA ; Rasic, Gordana; Turley, Andrew; Montgomery, Brian; Iturbe Ormaetxe, Inaki; Cook, Peter; Ryan, Peter; Ritchie, Scott; Hoffmann, Ary; O’Neill, Scott; Turelli, Michael
All
Department
Abstract
Dengue-suppressing Wolbachia strains are promising tools for arbovirus control, particularly as they have the potential to self-spread following local introductions. To test this, we followed the frequency of the transinfected Wolbachia strain wMel through Ae. aegypti in Cairns, Australia, following releases at 3 nonisolated locations within the city in early 2013. Spatial spread was analysed graphically using interpolation and by fitting a statistical model describing the position and width of the wave. For the larger 2 of the 3 releases (covering 0.97 km2 and 0.52 km2), we observed slow but steady spatial spread, at about 100–200 m per year, roughly consistent with theoretical predictions. In contrast, the smallest release (0.11 km2) produced erratic temporal and spatial dynamics, with little evidence of spread after 2 years. This is consistent with the prediction concerning fitness-decreasing Wolbachia transinfections that a minimum release area is needed to achieve stable local establishment and spread in continuous habitats. Our graphical and likelihood analyses produced broadly consistent estimates of wave speed and wave width. Spread at all sites was spatially heterogeneous, suggesting that environmental heterogeneity will affect large-scale Wolbachia transformations of urban mosquito populations. The persistence and spread of Wolbachia in release areas meeting minimum area requirements indicates the promise of successful large-scale population transfo
Publishing Year
Date Published
2017-05-30
Journal Title
PLoS Biology
Volume
15
Issue
5
Article Number
e2001894
ISSN
IST-REx-ID
951

Cite this

Schmidt T, Barton NH, Rasic G, et al. Local introduction and heterogeneous spatial spread of dengue-suppressing Wolbachia through an urban population of Aedes Aegypti. PLoS Biology. 2017;15(5). doi:10.1371/journal.pbio.2001894
Schmidt, T., Barton, N. H., Rasic, G., Turley, A., Montgomery, B., Iturbe Ormaetxe, I., … Turelli, M. (2017). Local introduction and heterogeneous spatial spread of dengue-suppressing Wolbachia through an urban population of Aedes Aegypti. PLoS Biology. Public Library of Science. https://doi.org/10.1371/journal.pbio.2001894
Schmidt, Tom, Nicholas H Barton, Gordana Rasic, Andrew Turley, Brian Montgomery, Inaki Iturbe Ormaetxe, Peter Cook, et al. “Local Introduction and Heterogeneous Spatial Spread of Dengue-Suppressing Wolbachia through an Urban Population of Aedes Aegypti.” PLoS Biology. Public Library of Science, 2017. https://doi.org/10.1371/journal.pbio.2001894.
T. Schmidt et al., “Local introduction and heterogeneous spatial spread of dengue-suppressing Wolbachia through an urban population of Aedes Aegypti,” PLoS Biology, vol. 15, no. 5. Public Library of Science, 2017.
Schmidt T, Barton NH, Rasic G, Turley A, Montgomery B, Iturbe Ormaetxe I, Cook P, Ryan P, Ritchie S, Hoffmann A, O’Neill S, Turelli M. 2017. Local introduction and heterogeneous spatial spread of dengue-suppressing Wolbachia through an urban population of Aedes Aegypti. PLoS Biology. 15(5), e2001894.
Schmidt, Tom, et al. “Local Introduction and Heterogeneous Spatial Spread of Dengue-Suppressing Wolbachia through an Urban Population of Aedes Aegypti.” PLoS Biology, vol. 15, no. 5, e2001894, Public Library of Science, 2017, doi:10.1371/journal.pbio.2001894.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2018-12-12
MD5 Checksum
107d290bd1159ec77b734eb2824b01c8


Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Search this title in

Google Scholar