The influence of mitochondrial dynamics and function on retinal ganglion cell susceptibility in optic nerve disease

Muench NA, Patel S, Maes ME, Donahue RJ, Ikeda A, Nickells RW. 2021. The influence of mitochondrial dynamics and function on retinal ganglion cell susceptibility in optic nerve disease. Cells. 10(7), 1593.

Download
OA 2021_Cells_Muench.pdf 4.56 MB [Published Version]

Journal Article | Published | English

Scopus indexed
Author
Muench, Nicole A.; Patel, Sonia; Maes, Margaret EISTA ; Donahue, Ryan J.; Ikeda, Akihiro; Nickells, Robert W.
Department
Abstract
The important roles of mitochondrial function and dysfunction in the process of neurodegeneration are widely acknowledged. Retinal ganglion cells (RGCs) appear to be a highly vulnerable neuronal cell type in the central nervous system with respect to mitochondrial dysfunction but the actual reasons for this are still incompletely understood. These cells have a unique circumstance where unmyelinated axons must bend nearly 90° to exit the eye and then cross a translaminar pressure gradient before becoming myelinated in the optic nerve. This region, the optic nerve head, contains some of the highest density of mitochondria present in these cells. Glaucoma represents a perfect storm of events occurring at this location, with a combination of changes in the translaminar pressure gradient and reassignment of the metabolic support functions of supporting glia, which appears to apply increased metabolic stress to the RGC axons leading to a failure of axonal transport mechanisms. However, RGCs themselves are also extremely sensitive to genetic mutations, particularly in genes affecting mitochondrial dynamics and mitochondrial clearance. These mutations, which systemically affect the mitochondria in every cell, often lead to an optic neuropathy as the sole pathologic defect in affected patients. This review summarizes knowledge of mitochondrial structure and function, the known energy demands of neurons in general, and places these in the context of normal and pathological characteristics of mitochondria attributed to RGCs.
Publishing Year
Date Published
2021-06-25
Journal Title
Cells
Publisher
MDPI
Acknowledgement
The authors are grateful to Kazuya Oikawa and Gillian McLellan for generously sharing some of their data for this review, and to Janis Eells for helpful comments on the manuscript.
Volume
10
Issue
7
Article Number
1593
eISSN
IST-REx-ID

Cite this

Muench NA, Patel S, Maes ME, Donahue RJ, Ikeda A, Nickells RW. The influence of mitochondrial dynamics and function on retinal ganglion cell susceptibility in optic nerve disease. Cells. 2021;10(7). doi:10.3390/cells10071593
Muench, N. A., Patel, S., Maes, M. E., Donahue, R. J., Ikeda, A., & Nickells, R. W. (2021). The influence of mitochondrial dynamics and function on retinal ganglion cell susceptibility in optic nerve disease. Cells. MDPI. https://doi.org/10.3390/cells10071593
Muench, Nicole A., Sonia Patel, Margaret E Maes, Ryan J. Donahue, Akihiro Ikeda, and Robert W. Nickells. “The Influence of Mitochondrial Dynamics and Function on Retinal Ganglion Cell Susceptibility in Optic Nerve Disease.” Cells. MDPI, 2021. https://doi.org/10.3390/cells10071593.
N. A. Muench, S. Patel, M. E. Maes, R. J. Donahue, A. Ikeda, and R. W. Nickells, “The influence of mitochondrial dynamics and function on retinal ganglion cell susceptibility in optic nerve disease,” Cells, vol. 10, no. 7. MDPI, 2021.
Muench NA, Patel S, Maes ME, Donahue RJ, Ikeda A, Nickells RW. 2021. The influence of mitochondrial dynamics and function on retinal ganglion cell susceptibility in optic nerve disease. Cells. 10(7), 1593.
Muench, Nicole A., et al. “The Influence of Mitochondrial Dynamics and Function on Retinal Ganglion Cell Susceptibility in Optic Nerve Disease.” Cells, vol. 10, no. 7, 1593, MDPI, 2021, doi:10.3390/cells10071593.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
Access Level
OA Open Access
Date Uploaded
2021-08-04
MD5 Checksum
e0497ce5c77fa3b65a538c7d6e0f6c66


Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Sources

PMID: 34201955
PubMed | Europe PMC

Search this title in

Google Scholar