Nitrate triggered phosphoproteome changes and a PIN2 phosphosite modulating root system architecture

Vega A, Fredes I, O’Brien J, Shen Z, Ötvös K, Abualia R, Benková E, Briggs SP, Gutiérrez RA. 2021. Nitrate triggered phosphoproteome changes and a PIN2 phosphosite modulating root system architecture. EMBO Reports. 22(9), e51813.

Download
OA 2021_EmboR_Vega.pdf 3.14 MB

Journal Article | Published | English

Scopus indexed
Author
Vega, Andrea; Fredes, Isabel; O’Brien, José; Shen, Zhouxin; Oetvoes, KrisztinaISTA ; Abualia, RashedISTA ; Benková, EvaISTA ; Briggs, Steven P.; Gutiérrez, Rodrigo A.
Abstract
Nitrate commands genome-wide gene expression changes that impact metabolism, physiology, plant growth, and development. In an effort to identify new components involved in nitrate responses in plants, we analyze the Arabidopsis thaliana root phosphoproteome in response to nitrate treatments via liquid chromatography coupled to tandem mass spectrometry. 176 phosphoproteins show significant changes at 5 or 20 min after nitrate treatments. Proteins identified by 5 min include signaling components such as kinases or transcription factors. In contrast, by 20 min, proteins identified were associated with transporter activity or hormone metabolism functions, among others. The phosphorylation profile of NITRATE TRANSPORTER 1.1 (NRT1.1) mutant plants was significantly altered as compared to wild-type plants, confirming its key role in nitrate signaling pathways that involves phosphorylation changes. Integrative bioinformatics analysis highlights auxin transport as an important mechanism modulated by nitrate signaling at the post-translational level. We validated a new phosphorylation site in PIN2 and provide evidence that it functions in primary and lateral root growth responses to nitrate.
Publishing Year
Date Published
2021-09-06
Journal Title
EMBO Reports
Acknowledgement
This work was supported by ANID—Millennium Science Initiative Program—ICN17_022, Fondo de Desarrollo de Areas Prioritarias (FONDAP) Center for Genome Regulation (15090007), ANID—Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) 1180759 (to RAG) and 1171631 (to AV). We would like to thank Unidad de Microscopía Avanzada UC (UMA UC).
Volume
22
Issue
9
Article Number
e51813
ISSN
eISSN
IST-REx-ID

Cite this

Vega A, Fredes I, O’Brien J, et al. Nitrate triggered phosphoproteome changes and a PIN2 phosphosite modulating root system architecture. EMBO Reports. 2021;22(9). doi:10.15252/embr.202051813
Vega, A., Fredes, I., O’Brien, J., Shen, Z., Ötvös, K., Abualia, R., … Gutiérrez, R. A. (2021). Nitrate triggered phosphoproteome changes and a PIN2 phosphosite modulating root system architecture. EMBO Reports. Wiley. https://doi.org/10.15252/embr.202051813
Vega, Andrea, Isabel Fredes, José O’Brien, Zhouxin Shen, Krisztina Ötvös, Rashed Abualia, Eva Benková, Steven P. Briggs, and Rodrigo A. Gutiérrez. “Nitrate Triggered Phosphoproteome Changes and a PIN2 Phosphosite Modulating Root System Architecture.” EMBO Reports. Wiley, 2021. https://doi.org/10.15252/embr.202051813.
A. Vega et al., “Nitrate triggered phosphoproteome changes and a PIN2 phosphosite modulating root system architecture,” EMBO Reports, vol. 22, no. 9. Wiley, 2021.
Vega A, Fredes I, O’Brien J, Shen Z, Ötvös K, Abualia R, Benková E, Briggs SP, Gutiérrez RA. 2021. Nitrate triggered phosphoproteome changes and a PIN2 phosphosite modulating root system architecture. EMBO Reports. 22(9), e51813.
Vega, Andrea, et al. “Nitrate Triggered Phosphoproteome Changes and a PIN2 Phosphosite Modulating Root System Architecture.” EMBO Reports, vol. 22, no. 9, e51813, Wiley, 2021, doi:10.15252/embr.202051813.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
Access Level
OA Open Access
Date Uploaded
2021-10-05
MD5 Checksum
750de03dc3b715c37090126c1548ba13


Material in ISTA:
Dissertation containing ISTA record

Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Sources

PMID: 34357701
PubMed | Europe PMC

Search this title in

Google Scholar