Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
116 Publications
2024 |Published| Conference Paper | IST-REx-ID: 17093 |
Communication-efficient federated learning with data and client heterogeneity
H. Zakerinia, S. Talaei, G. Nadiradze, D.-A. Alistarh, in:, Proceedings of the 27th International Conference on Artificial Intelligence and Statistics, ML Research Press, 2024, pp. 3448–3456.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
H. Zakerinia, S. Talaei, G. Nadiradze, D.-A. Alistarh, in:, Proceedings of the 27th International Conference on Artificial Intelligence and Statistics, ML Research Press, 2024, pp. 3448–3456.
2024 |Published| Conference Paper | IST-REx-ID: 17411 |
PEFLL: Personalized federated learning by learning to learn
J.A. Scott, H. Zakerinia, C. Lampert, in:, 12th International Conference on Learning Representations, OpenReview, 2024.
[Published Version]
View
| Files available
| arXiv
J.A. Scott, H. Zakerinia, C. Lampert, in:, 12th International Conference on Learning Representations, OpenReview, 2024.
2024 |Published| Conference Paper | IST-REx-ID: 17426
1-Lipschitz layers compared: Memory, speed, and certifiable robustness
B. Prach, F. Brau, G. Buttazzo, C. Lampert, in:, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Computer Vision Foundation, 2024, pp. 24574–24583.
[Published Version]
View
| Files available
B. Prach, F. Brau, G. Buttazzo, C. Lampert, in:, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Computer Vision Foundation, 2024, pp. 24574–24583.
2023 |Published| Journal Article | IST-REx-ID: 14320 |
Deep learning extraction of band structure parameters from density of states: A case study on trilayer graphene
P.M. Henderson, A. Ghazaryan, A.A. Zibrov, A.F. Young, M. Serbyn, Physical Review B 108 (2023).
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
P.M. Henderson, A. Ghazaryan, A.A. Zibrov, A.F. Young, M. Serbyn, Physical Review B 108 (2023).
2023 |Published| Conference Paper | IST-REx-ID: 14410
On the implementation of baselines and lightweight conditional model extrapolation (LIMES) under class-prior shift
P. Tomaszewska, C. Lampert, in:, International Workshop on Reproducible Research in Pattern Recognition, Springer Nature, 2023, pp. 67–73.
View
| DOI
P. Tomaszewska, C. Lampert, in:, International Workshop on Reproducible Research in Pattern Recognition, Springer Nature, 2023, pp. 67–73.
2023 |Published| Journal Article | IST-REx-ID: 14446 |
Against the flow of time with multi-output models
J. Jakubík, M. Phuong, M. Chvosteková, A. Krakovská, Measurement Science Review 23 (2023) 175–183.
[Published Version]
View
| Files available
| DOI
J. Jakubík, M. Phuong, M. Chvosteková, A. Krakovská, Measurement Science Review 23 (2023) 175–183.
2023 |Published| Conference Paper | IST-REx-ID: 14771 |
Bias in pruned vision models: In-depth analysis and countermeasures
E.B. Iofinova, E.-A. Peste, D.-A. Alistarh, in:, 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2023, pp. 24364–24373.
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
E.B. Iofinova, E.-A. Peste, D.-A. Alistarh, in:, 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2023, pp. 24364–24373.
2023 |Submitted| Preprint | IST-REx-ID: 15039 |
1-Lipschitz neural networks are more expressive with N-activations
B. Prach, C. Lampert, ArXiv (n.d.).
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
B. Prach, C. Lampert, ArXiv (n.d.).
2023 |Published| Thesis | IST-REx-ID: 13074 |
Efficiency and generalization of sparse neural networks
E.-A. Peste, Efficiency and Generalization of Sparse Neural Networks, Institute of Science and Technology Austria, 2023.
[Published Version]
View
| Files available
| DOI
E.-A. Peste, Efficiency and Generalization of Sparse Neural Networks, Institute of Science and Technology Austria, 2023.
2023 |Published| Conference Paper | IST-REx-ID: 13053 |
CrAM: A Compression-Aware Minimizer
A. Krumes, A. Vladu, E. Kurtic, C. Lampert, D.-A. Alistarh, in:, 11th International Conference on Learning Representations , OpenReview, 2023.
[Published Version]
View
| Files available
| Download Published Version (ext.)
| arXiv
A. Krumes, A. Vladu, E. Kurtic, C. Lampert, D.-A. Alistarh, in:, 11th International Conference on Learning Representations , OpenReview, 2023.
2023 |Published| Conference Paper | IST-REx-ID: 14921 |
Deep neural collapse is provably optimal for the deep unconstrained features model
P. Súkeník, M. Mondelli, C. Lampert, in:, 37th Annual Conference on Neural Information Processing Systems, 2023.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
P. Súkeník, M. Mondelli, C. Lampert, in:, 37th Annual Conference on Neural Information Processing Systems, 2023.
2022 |Submitted| Preprint | IST-REx-ID: 12660 |
Cross-client Label Propagation for transductive federated learning
J.A. Scott, M.X. Yeo, C. Lampert, ArXiv (n.d.).
[Preprint]
View
| Files available
| DOI
| arXiv
J.A. Scott, M.X. Yeo, C. Lampert, ArXiv (n.d.).
2022 |Submitted| Preprint | IST-REx-ID: 12662 |
Generalization in Multi-objective machine learning
P. Súkeník, C. Lampert, ArXiv (n.d.).
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
P. Súkeník, C. Lampert, ArXiv (n.d.).
2022 |Published| Journal Article | IST-REx-ID: 12495 |
FLEA: Provably robust fair multisource learning from unreliable training data
E.B. Iofinova, N.H. Konstantinov, C. Lampert, Transactions on Machine Learning Research (2022).
[Published Version]
View
| Files available
| Download Published Version (ext.)
| arXiv
E.B. Iofinova, N.H. Konstantinov, C. Lampert, Transactions on Machine Learning Research (2022).
2022 |Published| Conference Paper | IST-REx-ID: 11839 |
Almost-orthogonal layers for efficient general-purpose Lipschitz networks
B. Prach, C. Lampert, in:, Computer Vision – ECCV 2022, Springer Nature, 2022, pp. 350–365.
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
B. Prach, C. Lampert, in:, Computer Vision – ECCV 2022, Springer Nature, 2022, pp. 350–365.
2022 |Published| Conference Paper | IST-REx-ID: 12161 |
Lightweight conditional model extrapolation for streaming data under class-prior shift
P. Tomaszewska, C. Lampert, in:, 26th International Conference on Pattern Recognition, Institute of Electrical and Electronics Engineers, 2022, pp. 2128–2134.
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
P. Tomaszewska, C. Lampert, in:, 26th International Conference on Pattern Recognition, Institute of Electrical and Electronics Engineers, 2022, pp. 2128–2134.
2022 |Published| Conference Paper | IST-REx-ID: 12299 |
How well do sparse ImageNet models transfer?
E.B. Iofinova, E.-A. Peste, M. Kurtz, D.-A. Alistarh, in:, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Institute of Electrical and Electronics Engineers, 2022, pp. 12256–12266.
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
E.B. Iofinova, E.-A. Peste, M. Kurtz, D.-A. Alistarh, in:, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Institute of Electrical and Electronics Engineers, 2022, pp. 12256–12266.
2022 |Published| Journal Article | IST-REx-ID: 10802 |
Fairness-aware PAC learning from corrupted data
N.H. Konstantinov, C. Lampert, Journal of Machine Learning Research 23 (2022) 1–60.
[Published Version]
View
| Files available
| arXiv
N.H. Konstantinov, C. Lampert, Journal of Machine Learning Research 23 (2022) 1–60.
2022 |Published| Conference Paper | IST-REx-ID: 13241 |
On the impossibility of fairness-aware learning from corrupted data
N.H. Konstantinov, C. Lampert, in:, Proceedings of Machine Learning Research, ML Research Press, 2022, pp. 59–83.
[Preprint]
View
| Files available
| Download Preprint (ext.)
| arXiv
N.H. Konstantinov, C. Lampert, in:, Proceedings of Machine Learning Research, ML Research Press, 2022, pp. 59–83.
2022 |Published| Thesis | IST-REx-ID: 10799 |
Robustness and fairness in machine learning
N.H. Konstantinov, Robustness and Fairness in Machine Learning, Institute of Science and Technology Austria, 2022.
[Published Version]
View
| Files available
| DOI
N.H. Konstantinov, Robustness and Fairness in Machine Learning, Institute of Science and Technology Austria, 2022.