Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
132 Publications
2023 | Published | Conference Paper | IST-REx-ID: 13053 |
Krumes, A., Vladu, A., Kurtic, E., Lampert, C., & Alistarh, D.-A. (2023). CrAM: A Compression-Aware Minimizer. In 11th International Conference on Learning Representations . Kigali, Rwanda : OpenReview.
[Published Version]
View
| Files available
| Download Published Version (ext.)
| arXiv
2023 | Published | Conference Paper | IST-REx-ID: 14921 |
Súkeník, P., Mondelli, M., & Lampert, C. (2023). Deep neural collapse is provably optimal for the deep unconstrained features model. In 37th Annual Conference on Neural Information Processing Systems. New Orleans, LA, United States.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
2023 | Published | Thesis | IST-REx-ID: 13074 |
Krumes, A. (2023). Efficiency and generalization of sparse neural networks. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:13074
[Published Version]
View
| Files available
| DOI
2023 | Published | Conference Paper | IST-REx-ID: 14771 |
Iofinova, E. B., Krumes, A., & Alistarh, D.-A. (2023). Bias in pruned vision models: In-depth analysis and countermeasures. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 24364–24373). Vancouver, BC, Canada: IEEE. https://doi.org/10.1109/cvpr52729.2023.02334
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2023 | Draft | Preprint | IST-REx-ID: 15039 |
Prach, B., & Lampert, C. (n.d.). 1-Lipschitz neural networks are more expressive with N-activations. arXiv. https://doi.org/10.48550/ARXIV.2311.06103
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv
2023 | Published | Journal Article | IST-REx-ID: 14446 |
Jakubík, J., Phuong, M., Chvosteková, M., & Krakovská, A. (2023). Against the flow of time with multi-output models. Measurement Science Review. Sciendo. https://doi.org/10.2478/msr-2023-0023
[Published Version]
View
| Files available
| DOI
| WoS
2022 | Published | Conference Paper | IST-REx-ID: 13241 |
Konstantinov, N. H., & Lampert, C. (2022). On the impossibility of fairness-aware learning from corrupted data. In Proceedings of Machine Learning Research (Vol. 171, pp. 59–83). ML Research Press.
[Preprint]
View
| Files available
| Download Preprint (ext.)
| arXiv
2022 | Published | Conference Paper | IST-REx-ID: 12161 |
Tomaszewska, P., & Lampert, C. (2022). Lightweight conditional model extrapolation for streaming data under class-prior shift. In 26th International Conference on Pattern Recognition (Vol. 2022, pp. 2128–2134). Montreal, Canada: Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/icpr56361.2022.9956195
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2022 | Published | Conference Paper | IST-REx-ID: 10752
Lampert, J., & Lampert, C. (2022). Overcoming rare-language discrimination in multi-lingual sentiment analysis. In 2021 IEEE International Conference on Big Data (pp. 5185–5192). Orlando, FL, United States: IEEE. https://doi.org/10.1109/bigdata52589.2021.9672003
View
| DOI
| WoS
2022 | Published | Journal Article | IST-REx-ID: 10802 |
Konstantinov, N. H., & Lampert, C. (2022). Fairness-aware PAC learning from corrupted data. Journal of Machine Learning Research. ML Research Press.
[Published Version]
View
| Files available
| arXiv
2022 | Published | Journal Article | IST-REx-ID: 12495 |
Iofinova, E. B., Konstantinov, N. H., & Lampert, C. (2022). FLEA: Provably robust fair multisource learning from unreliable training data. Transactions on Machine Learning Research. ML Research Press.
[Published Version]
View
| Files available
| Download Published Version (ext.)
| arXiv
2022 | Published | Conference Paper | IST-REx-ID: 12299 |
Iofinova, E. B., Krumes, A., Kurtz, M., & Alistarh, D.-A. (2022). How well do sparse ImageNet models transfer? In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 12256–12266). New Orleans, LA, United States: Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/cvpr52688.2022.01195
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2022 | Published | Thesis | IST-REx-ID: 10799 |
Konstantinov, N. H. (2022). Robustness and fairness in machine learning. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:10799
[Published Version]
View
| Files available
| DOI
2022 | Published | Conference Paper | IST-REx-ID: 11839 |
Prach, B., & Lampert, C. (2022). Almost-orthogonal layers for efficient general-purpose Lipschitz networks. In Computer Vision – ECCV 2022 (Vol. 13681, pp. 350–365). Tel Aviv, Israel: Springer Nature. https://doi.org/10.1007/978-3-031-19803-8_21
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2021 | Published | Book Chapter | IST-REx-ID: 14987
Lampert, C. (2021). Zero-Shot Learning. In K. Ikeuchi (Ed.), Computer Vision (2nd ed., pp. 1395–1397). Cham: Springer. https://doi.org/10.1007/978-3-030-63416-2_874
View
| DOI
2021 | Draft | Preprint | IST-REx-ID: 10803 |
Konstantinov, N. H., & Lampert, C. (n.d.). Fairness through regularization for learning to rank. arXiv. https://doi.org/10.48550/arXiv.2102.05996
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv
2021 | Published | Conference Paper | IST-REx-ID: 9416 |
Phuong, M., & Lampert, C. (2021). The inductive bias of ReLU networks on orthogonally separable data. In 9th International Conference on Learning Representations. Virtual.
[Published Version]
View
| Files available
| Download Published Version (ext.)
2021 | Published | Thesis | IST-REx-ID: 9418 |
Phuong, M. (2021). Underspecification in deep learning. Institute of Science and Technology Austria. https://doi.org/10.15479/AT:ISTA:9418
[Published Version]
View
| Files available
| DOI
2021 | Published | Conference Paper | IST-REx-ID: 9210 |
Volhejn, V., & Lampert, C. (2021). Does SGD implicitly optimize for smoothness? In 42nd German Conference on Pattern Recognition (Vol. 12544, pp. 246–259). Tübingen, Germany: Springer. https://doi.org/10.1007/978-3-030-71278-5_18
[Submitted Version]
View
| Files available
| DOI
| WoS
2020 | Published | Conference Paper | IST-REx-ID: 8186 |
Henderson, P. M., Tsiminaki, V., & Lampert, C. (2020). Leveraging 2D data to learn textured 3D mesh generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 7498–7507). Virtual: IEEE. https://doi.org/10.1109/CVPR42600.2020.00752
[Submitted Version]
View
| Files available
| DOI
| Download Submitted Version (ext.)
| arXiv