Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).

We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.




136 Publications

2024 |Published| Conference Paper | IST-REx-ID: 15011 | OA
How to prune your language model: Recovering accuracy on the "Sparsity May Cry" benchmark
E. Kurtic, T. Hoefler, D.-A. Alistarh, in:, Proceedings of Machine Learning Research, ML Research Press, 2024, pp. 542–553.
[Preprint] View | Download Preprint (ext.) | arXiv
 
2024 |Published| Conference Paper | IST-REx-ID: 17093 | OA
Communication-efficient federated learning with data and client heterogeneity
H. Zakerinia, S. Talaei, G. Nadiradze, D.-A. Alistarh, in:, Proceedings of the 27th International Conference on Artificial Intelligence and Statistics, ML Research Press, 2024, pp. 3448–3456.
[Preprint] View | Download Preprint (ext.) | arXiv
 
2024 |Published| Conference Paper | IST-REx-ID: 17329 | OA
Game dynamics and equilibrium computation in the population protocol model
D.-A. Alistarh, K. Chatterjee, M. Karrabi, J.M. Lazarsfeld, in:, Proceedings of the 43rd Annual ACM Symposium on Principles of Distributed Computing, Association for Computing Machinery, 2024, pp. 40–49.
[Published Version] View | Files available | DOI
 
2024 |Published| Conference Paper | IST-REx-ID: 17332 | OA
Wait-free trees with asymptotically-efficient range queries
I. Kokorin, V. Yudov, V. Aksenov, D.-A. Alistarh, in:, 2024 IEEE International Parallel and Distributed Processing Symposium, IEEE, 2024, pp. 169–179.
[Preprint] View | DOI | Download Preprint (ext.) | arXiv
 
2024 |Published| Conference Paper | IST-REx-ID: 17469 | OA
Compression of structured data with autoencoders: Provable benefit of nonlinearities and depth
K. Kögler, A. Shevchenko, H. Hassani, M. Mondelli, in:, Proceedings of the 41st International Conference on Machine Learning, ML Research Press, 2024, pp. 24964–25015.
[Published Version] View | Files available | Download Published Version (ext.) | arXiv
 
2024 |Published| Thesis | IST-REx-ID: 17465
High-dimensional limits in artificial neural networks
A. Shevchenko, High-Dimensional Limits in Artificial Neural Networks, Institute of Science and Technology Austria, 2024.
[Published Version] View | Files available | DOI
 
2024 |Published| Thesis | IST-REx-ID: 17490 | OA
Communication-efficient distributed training of deep neural networks: An algorithms and systems perspective
I. Markov, Communication-Efficient Distributed Training of Deep Neural Networks: An Algorithms and Systems Perspective, Institute of Science and Technology Austria, 2024.
[Published Version] View | Files available | DOI
 
2024 |Published| Conference Paper | IST-REx-ID: 17456 | OA
L-GreCo: Layerwise-adaptive gradient compression for efficient data-parallel deep learning
I. Markov, K. Alimohammadi, E. Frantar, D.-A. Alistarh, in:, P. Gibbons, G. Pekhimenko, C. De Sa (Eds.), Proceedings of Machine Learning and Systems , Association for Computing Machinery, 2024.
[Published Version] View | Files available | Download Published Version (ext.) | arXiv
 
2024 |Published| Conference Paper | IST-REx-ID: 18070
Federated SGD with local asynchrony
B. Chatterjee, V. Kungurtsev, D.-A. Alistarh, in:, Proceedings of the 44th International Conference on Distributed Computing Systems, IEEE, 2024, pp. 857–868.
View | DOI
 
2024 |Published| Thesis | IST-REx-ID: 17485 | OA
Compressing large neural networks : Algorithms, systems and scaling laws
E. Frantar, Compressing Large Neural Networks : Algorithms, Systems and Scaling Laws, Institute of Science and Technology Austria, 2024.
[Published Version] View | Files available | DOI
 
2024 |Published| Conference Paper | IST-REx-ID: 18061 | OA
QMoE: Sub-1-bit compression of trillion parameter models
E. Frantar, D.-A. Alistarh, in:, P. Gibbons, G. Pekhimenko, C. De Sa (Eds.), Proceedings of Machine Learning and Systems, 2024.
[Published Version] View | Files available | Download Published Version (ext.)
 
2024 |Published| Conference Paper | IST-REx-ID: 18062 | OA
Scaling laws for sparsely-connected foundation models
E. Frantar, C.R. Ruiz, N. Houlsby, D.-A. Alistarh, U. Evci, in:, The Twelfth International Conference on Learning Representations, 2024.
[Published Version] View | Files available | Download Published Version (ext.) | arXiv
 
2023 |Published| Conference Paper | IST-REx-ID: 12735 | OA
Fast and scalable channels in Kotlin Coroutines
N. Koval, D.-A. Alistarh, R. Elizarov, in:, Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, Association for Computing Machinery, 2023, pp. 107–118.
[Preprint] View | DOI | Download Preprint (ext.) | arXiv
 
2023 |Published| Conference Poster | IST-REx-ID: 12736 | OA
Unexpected scaling in path copying trees
V. Aksenov, T.A. Brown, A. Fedorov, I. Kokorin, Unexpected Scaling in Path Copying Trees, Association for Computing Machinery, 2023.
[Published Version] View | DOI | Download Published Version (ext.)
 
2023 |Published| Journal Article | IST-REx-ID: 13179 | OA
CQS: A formally-verified framework for fair and abortable synchronization
N. Koval, D. Khalanskiy, D.-A. Alistarh, Proceedings of the ACM on Programming Languages 7 (2023).
[Published Version] View | Files available | DOI
 
2023 |Published| Journal Article | IST-REx-ID: 12566 | OA
Wait-free approximate agreement on graphs
D.-A. Alistarh, F. Ellen, J. Rybicki, Theoretical Computer Science 948 (2023).
[Published Version] View | Files available | DOI | WoS
 
2023 |Published| Journal Article | IST-REx-ID: 12330 | OA
The splay-list: A distribution-adaptive concurrent skip-list
V. Aksenov, D.-A. Alistarh, A. Drozdova, A. Mohtashami, Distributed Computing 36 (2023) 395–418.
[Preprint] View | DOI | Download Preprint (ext.) | WoS | arXiv
 
2023 |Published| Conference Paper | IST-REx-ID: 14460 | OA
SparseProp: Efficient sparse backpropagation for faster training of neural networks at the edge
M. Nikdan, T. Pegolotti, E.B. Iofinova, E. Kurtic, D.-A. Alistarh, in:, Proceedings of the 40th International Conference on Machine Learning, ML Research Press, 2023, pp. 26215–26227.
[Preprint] View | Download Preprint (ext.) | arXiv
 
2023 |Published| Journal Article | IST-REx-ID: 14364 | OA
Why extension-based proofs fail
D.-A. Alistarh, J. Aspnes, F. Ellen, R. Gelashvili, L. Zhu, SIAM Journal on Computing 52 (2023) 913–944.
[Preprint] View | Files available | DOI | Download Preprint (ext.) | WoS | arXiv
 
2023 |Published| Conference Paper | IST-REx-ID: 14771 | OA
Bias in pruned vision models: In-depth analysis and countermeasures
E.B. Iofinova, E.-A. Peste, D.-A. Alistarh, in:, 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, 2023, pp. 24364–24373.
[Preprint] View | Files available | DOI | Download Preprint (ext.) | WoS | arXiv
 

Filters and Search Terms

type<>research_data

type<>research_data_reference

type<>software

Search

Filter Publications