Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).

We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.




148 Publications

2024 | Published | Conference Paper | IST-REx-ID: 17093 | OA
Zakerinia, Hossein, Shayan Talaei, Giorgi Nadiradze, and Dan-Adrian Alistarh. “Communication-Efficient Federated Learning with Data and Client Heterogeneity.” In Proceedings of the 27th International Conference on Artificial Intelligence and Statistics, 238:3448–56. ML Research Press, 2024.
[Preprint] View | Download Preprint (ext.) | arXiv
 
2024 | Published | Conference Paper | IST-REx-ID: 17332 | OA
Kokorin, Ilya, Victor Yudov, Vitaly Aksenov, and Dan-Adrian Alistarh. “Wait-Free Trees with Asymptotically-Efficient Range Queries.” In 2024 IEEE International Parallel and Distributed Processing Symposium, 169–79. IEEE, 2024. https://doi.org/10.1109/IPDPS57955.2024.00023.
[Preprint] View | DOI | Download Preprint (ext.) | arXiv
 
2024 | Published | Conference Paper | IST-REx-ID: 15011 | OA
Kurtic, Eldar, Torsten Hoefler, and Dan-Adrian Alistarh. “How to Prune Your Language Model: Recovering Accuracy on the ‘Sparsity May Cry’ Benchmark.” In Proceedings of Machine Learning Research, 234:542–53. ML Research Press, 2024.
[Preprint] View | Download Preprint (ext.) | arXiv
 
2024 | Published | Conference Paper | IST-REx-ID: 18070
Chatterjee, Bapi, Vyacheslav Kungurtsev, and Dan-Adrian Alistarh. “Federated SGD with Local Asynchrony.” In Proceedings of the 44th International Conference on Distributed Computing Systems, 857–68. IEEE, 2024. https://doi.org/10.1109/ICDCS60910.2024.00084.
View | DOI
 
2024 | Published | Conference Paper | IST-REx-ID: 18113 | OA
Egiazarian, Vage, Andrei Panferov, Denis Kuznedelev, Elias Frantar, Artem Babenko, and Dan-Adrian Alistarh. “Extreme Compression of Large Language Models via Additive Quantization.” In Proceedings of the 41st International Conference on Machine Learning, 235:12284–303. ML Research Press, 2024.
[Preprint] View | Download Preprint (ext.) | arXiv
 
2024 | Published | Conference Paper | IST-REx-ID: 18117 | OA
Nikdan, Mahdi, Soroush Tabesh, Elvir Crncevic, and Dan-Adrian Alistarh. “RoSA: Accurate Parameter-Efficient Fine-Tuning via Robust Adaptation.” In Proceedings of the 41st International Conference on Machine Learning, 235:38187–206. ML Research Press, 2024.
[Preprint] View | Files available | Download Preprint (ext.) | arXiv
 
2024 | Published | Conference Paper | IST-REx-ID: 18975 | OA
Modoranu, Ionut-Vlad, Aleksei Kalinov, Eldar Kurtic, Elias Frantar, and Dan-Adrian Alistarh. “Error Feedback Can Accurately Compress Preconditioners.” In 41st International Conference on Machine Learning, 235:35910–33. ML Research Press, 2024.
[Preprint] View | Download Preprint (ext.) | arXiv
 
2024 | Published | Conference Paper | IST-REx-ID: 18977 | OA
Dettmers, Tim, Ruslan A. Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashkboos, Alexander Borzunov, Torsten Hoefler, and Dan-Adrian Alistarh. “SpQR: A Sparse-Quantized Representation for near-Lossless LLM Weight Compression.” In 12th International Conference on Learning Representations. OpenReview, 2024.
[Preprint] View | Download Preprint (ext.) | arXiv
 
2024 | Published | Conference Paper | IST-REx-ID: 19519 | OA
Malinovskii, Vladimir, PV-tuning: Beyond straight-through estimation for extreme LLM compression. 38th Conference on Neural Information Processing Systems 37. 2024
[Published Version] View | Files available | arXiv
 
2024 | Published | Conference Paper | IST-REx-ID: 19511 | OA
Ashkboos, Saleh, QuaRot: Outlier-free 4-bit inference in rotated LLMs. 38th Conference on Neural Information Processing Systems 37. 2024
[Preprint] View | Files available | Download Preprint (ext.) | arXiv
 
2024 | Published | Conference Paper | IST-REx-ID: 18121 | OA
Moakhar, Arshia Soltani, Eugenia B Iofinova, Elias Frantar, and Dan-Adrian Alistarh. “SPADE: Sparsity-Guided Debugging for Deep Neural Networks.” In Proceedings of the 41st International Conference on Machine Learning, 235:45955–87. ML Research Press, 2024.
[Preprint] View | Files available | Download Preprint (ext.) | arXiv
 
2024 | Published | Thesis | IST-REx-ID: 17485 | OA
Frantar, Elias. “Compressing Large Neural Networks : Algorithms, Systems and Scaling Laws.” Institute of Science and Technology Austria, 2024. https://doi.org/10.15479/at:ista:17485.
[Published Version] View | Files available | DOI
 
2024 | Published | Conference Paper | IST-REx-ID: 18061 | OA
Frantar, Elias, and Dan-Adrian Alistarh. “QMoE: Sub-1-Bit Compression of Trillion Parameter Models.” In Proceedings of Machine Learning and Systems, edited by P. Gibbons, G. Pekhimenko, and C. De Sa, Vol. 6, 2024.
[Published Version] View | Files available | Download Published Version (ext.)
 
2024 | Published | Conference Paper | IST-REx-ID: 18062 | OA
Frantar, Elias, Carlos Riquelme Ruiz, Neil Houlsby, Dan-Adrian Alistarh, and Utku Evci. “Scaling Laws for Sparsely-Connected Foundation Models.” In The Twelfth International Conference on Learning Representations, 2024.
[Published Version] View | Files available | Download Published Version (ext.) | arXiv
 
2024 | Published | Thesis | IST-REx-ID: 17490 | OA
Markov, Ilia. “Communication-Efficient Distributed Training of Deep Neural Networks: An Algorithms and Systems Perspective.” Institute of Science and Technology Austria, 2024. https://doi.org/10.15479/at:ista:17490.
[Published Version] View | Files available | DOI
 
2024 | Published | Conference Paper | IST-REx-ID: 17456 | OA
Markov, Ilia, Kaveh Alimohammadi, Elias Frantar, and Dan-Adrian Alistarh. “L-GreCo: Layerwise-Adaptive Gradient Compression for Efficient Data-Parallel Deep Learning.” In Proceedings of Machine Learning and Systems , edited by P. Gibbons, G. Pekhimenko, and C. De Sa, Vol. 6. Association for Computing Machinery, 2024.
[Published Version] View | Files available | Download Published Version (ext.) | arXiv
 
2024 | Published | Conference Paper | IST-REx-ID: 17329 | OA
Alistarh, Dan-Adrian, Krishnendu Chatterjee, Mehrdad Karrabi, and John M Lazarsfeld. “Game Dynamics and Equilibrium Computation in the Population Protocol Model.” In Proceedings of the 43rd Annual ACM Symposium on Principles of Distributed Computing, 40–49. Association for Computing Machinery, 2024. https://doi.org/10.1145/3662158.3662768.
[Published Version] View | Files available | DOI
 
2024 | Published | Conference Paper | IST-REx-ID: 18976 | OA
Islamov, Rustem, Mher Safaryan, and Dan-Adrian Alistarh. “AsGrad: A Sharp Unified Analysis of Asynchronous-SGD Algorithms.” In Proceedings of The 27th International Conference on Artificial Intelligence and Statistics, 238:649–57. ML Research Press, 2024.
[Preprint] View | Download Preprint (ext.) | arXiv
 
2024 | Published | Conference Paper | IST-REx-ID: 19518 | OA
Wu, Diyuan, The iterative optimal brain surgeon: Faster sparse recovery by leveraging second-order information. 38th Conference on Neural Information Processing Systems 37. 2024
[Preprint] View | Download Preprint (ext.) | arXiv
 
2024 | Published | Conference Paper | IST-REx-ID: 19510 | OA
Modoranu, Ionut-Vlad, MICROADAM: Accurate adaptive optimization with low space overhead and provable convergence. 38th Conference on Neural Information Processing Systems 37. 2024
[Preprint] View | Files available | Download Preprint (ext.) | arXiv
 

Search

Filter Publications

Display / Sort

Citation Style: Chicago

Export / Embed