Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
152 Publications
2024 | Published | Conference Paper | IST-REx-ID: 18977 |

Dettmers T, Svirschevski RA, Egiazarian V, et al. SpQR: A sparse-quantized representation for near-lossless LLM weight compression. In: 12th International Conference on Learning Representations. OpenReview; 2024.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
2024 | Published | Thesis | IST-REx-ID: 17485 |

Frantar E. Compressing large neural networks : Algorithms, systems and scaling laws. 2024. doi:10.15479/at:ista:17485
[Published Version]
View
| Files available
| DOI
2024 | Published | Conference Paper | IST-REx-ID: 18061 |

Frantar E, Alistarh D-A. QMoE: Sub-1-bit compression of trillion parameter models. In: Gibbons P, Pekhimenko G, De Sa C, eds. Proceedings of Machine Learning and Systems. Vol 6. ; 2024.
[Published Version]
View
| Files available
| Download Published Version (ext.)
2024 | Published | Conference Paper | IST-REx-ID: 18062 |

Frantar E, Ruiz CR, Houlsby N, Alistarh D-A, Evci U. Scaling laws for sparsely-connected foundation models. In: The Twelfth International Conference on Learning Representations. ; 2024.
[Published Version]
View
| Files available
| Download Published Version (ext.)
| arXiv
2024 | Published | Conference Paper | IST-REx-ID: 17329 |

Alistarh D-A, Chatterjee K, Karrabi M, Lazarsfeld JM. Game dynamics and equilibrium computation in the population protocol model. In: Proceedings of the 43rd Annual ACM Symposium on Principles of Distributed Computing. Association for Computing Machinery; 2024:40-49. doi:10.1145/3662158.3662768
[Published Version]
View
| Files available
| DOI
2024 | Published | Conference Paper | IST-REx-ID: 18976 |

Islamov R, Safaryan M, Alistarh D-A. AsGrad: A sharp unified analysis of asynchronous-SGD algorithms. In: Proceedings of The 27th International Conference on Artificial Intelligence and Statistics. Vol 238. ML Research Press; 2024:649-657.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
2024 | Published | Conference Paper | IST-REx-ID: 18121 |

Moakhar AS, Iofinova EB, Frantar E, Alistarh D-A. SPADE: Sparsity-guided debugging for deep neural networks. In: Proceedings of the 41st International Conference on Machine Learning. Vol 235. ML Research Press; 2024:45955-45987.
[Preprint]
View
| Files available
| Download Preprint (ext.)
| arXiv
2024 | Published | Thesis | IST-REx-ID: 17490 |

Markov I. Communication-efficient distributed training of deep neural networks : An algorithms and systems perspective. 2024. doi:10.15479/at:ista:17490
[Published Version]
View
| Files available
| DOI
2024 | Published | Conference Paper | IST-REx-ID: 17456 |

Markov I, Alimohammadi K, Frantar E, Alistarh D-A. L-GreCo: Layerwise-adaptive gradient compression for efficient data-parallel deep learning. In: Gibbons P, Pekhimenko G, De Sa C, eds. Proceedings of Machine Learning and Systems . Vol 6. Association for Computing Machinery; 2024.
[Published Version]
View
| Files available
| Download Published Version (ext.)
| arXiv
2024 | Published | Conference Paper | IST-REx-ID: 19518 |

Wu D, Modoranu I-V, Safaryan M, Kuznedelev D, Alistarh D-A. The iterative optimal brain surgeon: Faster sparse recovery by leveraging second-order information. In: 38th Conference on Neural Information Processing Systems. Vol 37. Neural Information Processing Systems Foundation; 2024.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
2024 | Published | Conference Paper | IST-REx-ID: 19510 |

Modoranu I-V, Safaryan M, Malinovsky G, et al. MICROADAM: Accurate adaptive optimization with low space overhead and provable convergence. In: 38th Conference on Neural Information Processing Systems. Vol 37. Neural Information Processing Systems Foundation; 2024.
[Preprint]
View
| Files available
| Download Preprint (ext.)
| arXiv
2024 | Published | Conference Paper | IST-REx-ID: 19511 |

Ashkboos S, Mohtashami A, Croci ML, et al. QuaRot: Outlier-free 4-bit inference in rotated LLMs. In: 38th Conference on Neural Information Processing Systems. Vol 37. Neural Information Processing Systems Foundation; 2024.
[Preprint]
View
| Files available
| Download Preprint (ext.)
| arXiv
2024 | Published | Conference Paper | IST-REx-ID: 19519 |

Malinovskii V, Mazur D, Ilin I, et al. PV-tuning: Beyond straight-through estimation for extreme LLM compression. In: 38th Conference on Neural Information Processing Systems. Vol 37. Neural Information Processing Systems Foundation; 2024.
[Published Version]
View
| Files available
| arXiv
2024 | Research Data Reference | IST-REx-ID: 19884 |

Frantar E, Castro R, Chen J, Hoefler T, Alistarh D-A. MARLIN: Mixed-precision auto-regressive parallel inference on Large Language Models. 2024. doi:10.5281/ZENODO.14213091
[Published Version]
View
| Files available
| DOI
| Download Published Version (ext.)
2024 | Published | Thesis | IST-REx-ID: 17465 |

Shevchenko A. High-dimensional limits in artificial neural networks. 2024. doi:10.15479/at:ista:17465
[Published Version]
View
| Files available
| DOI
2024 | Published | Conference Paper | IST-REx-ID: 17469 |

Kögler K, Shevchenko A, Hassani H, Mondelli M. Compression of structured data with autoencoders: Provable benefit of nonlinearities and depth. In: Proceedings of the 41st International Conference on Machine Learning. Vol 235. ML Research Press; 2024:24964-25015.
[Published Version]
View
| Files available
| Download Published Version (ext.)
| arXiv
2023 | Published | Journal Article | IST-REx-ID: 13179 |

Koval N, Khalanskiy D, Alistarh D-A. CQS: A formally-verified framework for fair and abortable synchronization. Proceedings of the ACM on Programming Languages. 2023;7. doi:10.1145/3591230
[Published Version]
View
| Files available
| DOI
2023 | Published | Conference Paper | IST-REx-ID: 13262 |

Fedorov A, Hashemi D, Nadiradze G, Alistarh D-A. Provably-efficient and internally-deterministic parallel Union-Find. In: Proceedings of the 35th ACM Symposium on Parallelism in Algorithms and Architectures. Association for Computing Machinery; 2023:261-271. doi:10.1145/3558481.3591082
[Published Version]
View
| Files available
| DOI
| arXiv
2023 | Published | Conference Paper | IST-REx-ID: 14260 |

Koval N, Fedorov A, Sokolova M, Tsitelov D, Alistarh D-A. Lincheck: A practical framework for testing concurrent data structures on JVM. In: 35th International Conference on Computer Aided Verification . Vol 13964. Springer Nature; 2023:156-169. doi:10.1007/978-3-031-37706-8_8
[Published Version]
View
| Files available
| DOI
2023 | Published | Journal Article | IST-REx-ID: 12330 |

Aksenov V, Alistarh D-A, Drozdova A, Mohtashami A. The splay-list: A distribution-adaptive concurrent skip-list. Distributed Computing. 2023;36:395-418. doi:10.1007/s00446-022-00441-x
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv