Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).

We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.




152 Publications

2024 | Published | Conference Paper | IST-REx-ID: 18977 | OA
Dettmers, T., Svirschevski, R. A., Egiazarian, V., Kuznedelev, D., Frantar, E., Ashkboos, S., … Alistarh, D.-A. (2024). SpQR: A sparse-quantized representation for near-lossless LLM weight compression. In 12th International Conference on Learning Representations. Vienna, Austria: OpenReview.
[Preprint] View | Download Preprint (ext.) | arXiv
 
2024 | Published | Thesis | IST-REx-ID: 17485 | OA
Frantar, E. (2024). Compressing large neural networks : Algorithms, systems and scaling laws. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:17485
[Published Version] View | Files available | DOI
 
2024 | Published | Conference Paper | IST-REx-ID: 18061 | OA
Frantar, E., & Alistarh, D.-A. (2024). QMoE: Sub-1-bit compression of trillion parameter models. In P. Gibbons, G. Pekhimenko, & C. De Sa (Eds.), Proceedings of Machine Learning and Systems (Vol. 6). Santa Clara, CA, USA.
[Published Version] View | Files available | Download Published Version (ext.)
 
2024 | Published | Conference Paper | IST-REx-ID: 18062 | OA
Frantar, E., Ruiz, C. R., Houlsby, N., Alistarh, D.-A., & Evci, U. (2024). Scaling laws for sparsely-connected foundation models. In The Twelfth International Conference on Learning Representations. Vienna, Austria.
[Published Version] View | Files available | Download Published Version (ext.) | arXiv
 
2024 | Published | Conference Paper | IST-REx-ID: 17329 | OA
Alistarh, D.-A., Chatterjee, K., Karrabi, M., & Lazarsfeld, J. M. (2024). Game dynamics and equilibrium computation in the population protocol model. In Proceedings of the 43rd Annual ACM Symposium on Principles of Distributed Computing (pp. 40–49). Nantes, France: Association for Computing Machinery. https://doi.org/10.1145/3662158.3662768
[Published Version] View | Files available | DOI
 
2024 | Published | Conference Paper | IST-REx-ID: 18976 | OA
Islamov, R., Safaryan, M., & Alistarh, D.-A. (2024). AsGrad: A sharp unified analysis of asynchronous-SGD algorithms. In Proceedings of The 27th International Conference on Artificial Intelligence and Statistics (Vol. 238, pp. 649–657). Valencia, Spain: ML Research Press.
[Preprint] View | Download Preprint (ext.) | arXiv
 
2024 | Published | Conference Paper | IST-REx-ID: 18121 | OA
Moakhar, A. S., Iofinova, E. B., Frantar, E., & Alistarh, D.-A. (2024). SPADE: Sparsity-guided debugging for deep neural networks. In Proceedings of the 41st International Conference on Machine Learning (Vol. 235, pp. 45955–45987). Vienna, Austria: ML Research Press.
[Preprint] View | Files available | Download Preprint (ext.) | arXiv
 
2024 | Published | Thesis | IST-REx-ID: 17490 | OA
Markov, I. (2024). Communication-efficient distributed training of deep neural networks : An algorithms and systems perspective. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:17490
[Published Version] View | Files available | DOI
 
2024 | Published | Conference Paper | IST-REx-ID: 17456 | OA
Markov, I., Alimohammadi, K., Frantar, E., & Alistarh, D.-A. (2024). L-GreCo: Layerwise-adaptive gradient compression for efficient data-parallel deep learning. In P. Gibbons, G. Pekhimenko, & C. De Sa (Eds.), Proceedings of Machine Learning and Systems (Vol. 6). Athens, Greece: Association for Computing Machinery.
[Published Version] View | Files available | Download Published Version (ext.) | arXiv
 
2024 | Published | Conference Paper | IST-REx-ID: 19518 | OA
Wu, D., Modoranu, I.-V., Safaryan, M., Kuznedelev, D., & Alistarh, D.-A. (2024). The iterative optimal brain surgeon: Faster sparse recovery by leveraging second-order information. In 38th Conference on Neural Information Processing Systems (Vol. 37). Vancouver, Canada: Neural Information Processing Systems Foundation.
[Preprint] View | Download Preprint (ext.) | arXiv
 
2024 | Published | Conference Paper | IST-REx-ID: 19510 | OA
Modoranu, I.-V., Safaryan, M., Malinovsky, G., Kurtic, E., Robert, T., Richtárik, P., & Alistarh, D.-A. (2024). MICROADAM: Accurate adaptive optimization with low space overhead and provable convergence. In 38th Conference on Neural Information Processing Systems (Vol. 37). Neural Information Processing Systems Foundation.
[Preprint] View | Files available | Download Preprint (ext.) | arXiv
 
2024 | Published | Conference Paper | IST-REx-ID: 19511 | OA
Ashkboos, S., Mohtashami, A., Croci, M. L., Li, B., Cameron, P., Jaggi, M., … Hensman, J. (2024). QuaRot: Outlier-free 4-bit inference in rotated LLMs. In 38th Conference on Neural Information Processing Systems (Vol. 37). Vancouver, Canada: Neural Information Processing Systems Foundation.
[Preprint] View | Files available | Download Preprint (ext.) | arXiv
 
2024 | Published | Conference Paper | IST-REx-ID: 19519 | OA
Malinovskii, V., Mazur, D., Ilin, I., Kuznedelev, D., Burlachenko, K., Yi, K., … Richtarik, P. (2024). PV-tuning: Beyond straight-through estimation for extreme LLM compression. In 38th Conference on Neural Information Processing Systems (Vol. 37). Vancouver, Canada: Neural Information Processing Systems Foundation.
[Published Version] View | Files available | arXiv
 
2024 | Research Data Reference | IST-REx-ID: 19884 | OA
Frantar, E., Castro, R., Chen, J., Hoefler, T., & Alistarh, D.-A. (2024). MARLIN: Mixed-precision auto-regressive parallel inference on Large Language Models. Zenodo. https://doi.org/10.5281/ZENODO.14213091
[Published Version] View | Files available | DOI | Download Published Version (ext.)
 
2024 | Published | Thesis | IST-REx-ID: 17465 | OA
Shevchenko, A. (2024). High-dimensional limits in artificial neural networks. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:17465
[Published Version] View | Files available | DOI
 
2024 | Published | Conference Paper | IST-REx-ID: 17469 | OA
Kögler, K., Shevchenko, A., Hassani, H., & Mondelli, M. (2024). Compression of structured data with autoencoders: Provable benefit of nonlinearities and depth. In Proceedings of the 41st International Conference on Machine Learning (Vol. 235, pp. 24964–25015). Vienna, Austria: ML Research Press.
[Published Version] View | Files available | Download Published Version (ext.) | arXiv
 
2023 | Published | Journal Article | IST-REx-ID: 13179 | OA
Koval, N., Khalanskiy, D., & Alistarh, D.-A. (2023). CQS: A formally-verified framework for fair and abortable synchronization. Proceedings of the ACM on Programming Languages. Association for Computing Machinery . https://doi.org/10.1145/3591230
[Published Version] View | Files available | DOI
 
2023 | Published | Conference Paper | IST-REx-ID: 13262 | OA
Fedorov, A., Hashemi, D., Nadiradze, G., & Alistarh, D.-A. (2023). Provably-efficient and internally-deterministic parallel Union-Find. In Proceedings of the 35th ACM Symposium on Parallelism in Algorithms and Architectures (pp. 261–271). Orlando, FL, United States: Association for Computing Machinery. https://doi.org/10.1145/3558481.3591082
[Published Version] View | Files available | DOI | arXiv
 
2023 | Published | Conference Paper | IST-REx-ID: 14260 | OA
Koval, N., Fedorov, A., Sokolova, M., Tsitelov, D., & Alistarh, D.-A. (2023). Lincheck: A practical framework for testing concurrent data structures on JVM. In 35th International Conference on Computer Aided Verification (Vol. 13964, pp. 156–169). Paris, France: Springer Nature. https://doi.org/10.1007/978-3-031-37706-8_8
[Published Version] View | Files available | DOI
 
2023 | Published | Journal Article | IST-REx-ID: 12330 | OA
Aksenov, V., Alistarh, D.-A., Drozdova, A., & Mohtashami, A. (2023). The splay-list: A distribution-adaptive concurrent skip-list. Distributed Computing. Springer Nature. https://doi.org/10.1007/s00446-022-00441-x
[Preprint] View | DOI | Download Preprint (ext.) | WoS | arXiv
 

Search

Filter Publications

Display / Sort

Citation Style: APA

Export / Embed