Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
87 Publications
- 1
- 2
- 3 (current)
- 4
- 5
2022 | Published | Conference Paper | IST-REx-ID: 14174 |

Dittadi, Andrea, Frederik Träuble, Manuel Wüthrich, Felix Widmaier, Peter Gehler, Ole Winther, Francesco Locatello, Olivier Bachem, Bernhard Schölkopf, and Stefan Bauer. “The Role of Pretrained Representations for the OOD Generalization of Reinforcement Learning Agents.” In 10th International Conference on Learning Representations, 2022.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
2022 | Published | Conference Paper | IST-REx-ID: 14175 |

Makansi, Osama, Julius von Kügelgen, Francesco Locatello, Peter Gehler, Dominik Janzing, Thomas Brox, and Bernhard Schölkopf. “You Mostly Walk Alone: Analyzing Feature Attribution in Trajectory Prediction.” In 10th International Conference on Learning Representations, 2022.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
2022 | Submitted | Conference Paper | IST-REx-ID: 14215 |

Rahaman, Nasim, Martin Weiss, Frederik Träuble, Francesco Locatello, Alexandre Lacoste, Yoshua Bengio, Chris Pal, Li Erran Li, and Bernhard Schölkopf. “A General Purpose Neural Architecture for Geospatial Systems.” In 36th Conference on Neural Information Processing Systems, n.d.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
2022 | Submitted | Preprint | IST-REx-ID: 14220 |

Mambelli, Davide, Frederik Träuble, Stefan Bauer, Bernhard Schölkopf, and Francesco Locatello. “Compositional Multi-Object Reinforcement Learning with Linear Relation Networks.” ArXiv, n.d. https://doi.org/10.48550/arXiv.2201.13388.
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2021 | Published | Journal Article | IST-REx-ID: 14117 |

Scholkopf, Bernhard, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner, Anirudh Goyal, and Yoshua Bengio. “Toward Causal Representation Learning.” Proceedings of the IEEE. Institute of Electrical and Electronics Engineers, 2021. https://doi.org/10.1109/jproc.2021.3058954.
[Published Version]
View
| DOI
| Download Published Version (ext.)
| arXiv
2021 | Published | Conference Paper | IST-REx-ID: 14176 |

Yèche, Hugo, Gideon Dresdner, Francesco Locatello, Matthias Hüser, and Gunnar Rätsch. “Neighborhood Contrastive Learning Applied to Online Patient Monitoring.” In Proceedings of 38th International Conference on Machine Learning, 139:11964–74. ML Research Press, 2021.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
2021 | Published | Conference Paper | IST-REx-ID: 14177 |

Träuble, Frederik, Elliot Creager, Niki Kilbertus, Francesco Locatello, Andrea Dittadi, Anirudh Goyal, Bernhard Schölkopf, and Stefan Bauer. “On Disentangled Representations Learned from Correlated Data.” In Proceedings of the 38th International Conference on Machine Learning, 139:10401–12. ML Research Press, 2021.
[Published Version]
View
| Download Published Version (ext.)
| arXiv
2021 | Published | Conference Paper | IST-REx-ID: 14178 |

Dittadi, Andrea, Frederik Träuble, Francesco Locatello, Manuel Wüthrich, Vaibhav Agrawal, Ole Winther, Stefan Bauer, and Bernhard Schölkopf. “On the Transfer of Disentangled Representations in Realistic Settings.” In The Ninth International Conference on Learning Representations, 2021.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
2021 | Published | Conference Paper | IST-REx-ID: 14179 |

Kügelgen, Julius von, Yash Sharma, Luigi Gresele, Wieland Brendel, Bernhard Schölkopf, Michel Besserve, and Francesco Locatello. “Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style.” In Advances in Neural Information Processing Systems, 34:16451–67, 2021.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
2021 | Published | Conference Paper | IST-REx-ID: 14180 |

Rahaman, Nasim, Muhammad Waleed Gondal, Shruti Joshi, Peter Gehler, Yoshua Bengio, Francesco Locatello, and Bernhard Schölkopf. “Dynamic Inference with Neural Interpreters.” In Advances in Neural Information Processing Systems, 34:10985–98, 2021.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
2021 | Published | Conference Paper | IST-REx-ID: 14181 |

Dresdner, Gideon, Saurav Shekhar, Fabian Pedregosa, Francesco Locatello, and Gunnar Rätsch. “Boosting Variational Inference with Locally Adaptive Step-Sizes.” In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, 2337–43. International Joint Conferences on Artificial Intelligence, 2021. https://doi.org/10.24963/ijcai.2021/322.
[Published Version]
View
| DOI
| Download Published Version (ext.)
| arXiv
2021 | Published | Conference Paper | IST-REx-ID: 14182 |

Träuble, Frederik, Julius von Kügelgen, Matthäus Kleindessner, Francesco Locatello, Bernhard Schölkopf, and Peter Gehler. “Backward-Compatible Prediction Updates: A Probabilistic Approach.” In 35th Conference on Neural Information Processing Systems, 34:116–28, 2021.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
2021 | Submitted | Preprint | IST-REx-ID: 14221 |

Locatello, Francesco. “Enforcing and Discovering Structure in Machine Learning.” ArXiv, n.d. https://doi.org/10.48550/arXiv.2111.13693.
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2021 | Published | Conference Paper | IST-REx-ID: 14332
Träuble, Frederik, Andrea Dittadi, Manuel Wuthrich, Felix Widmaier, Peter Vincent Gehler, Ole Winther, Francesco Locatello, Olivier Bachem, Bernhard Schölkopf, and Stefan Bauer. “Representation Learning for Out-of-Distribution Generalization in Reinforcement Learning.” In ICML 2021 Workshop on Unsupervised Reinforcement Learning, 2021.
View
2021 | Patent | IST-REx-ID: 14185 |

Weissenborn, Dirk, Jakob Uszkoreit, Thomas Unterthiner, Aravindh Mahendran, Francesco Locatello, Thomas Kipf, Georg Heigold, and Alexey Dosovitskiy. “Object-Centric Learning with Slot Attention,” 2021.
[Published Version]
View
| Download Published Version (ext.)
| arXiv
2020 | Published | Journal Article | IST-REx-ID: 14125 |

Stark SG et al. 2020. SCIM: Universal single-cell matching with unpaired feature sets. Bioinformatics. 36(Supplement_2), i919–i927.
[Published Version]
View
| Files available
| DOI
| Download Published Version (ext.)
| PubMed | Europe PMC
2020 | Published | Conference Paper | IST-REx-ID: 14186 |

Locatello, Francesco, Stefan Bauer, Mario Lucic, Gunnar Rätsch, Sylvain Gelly, Bernhard Schölkopf, and Olivier Bachem. “A Commentary on the Unsupervised Learning of Disentangled Representations.” In The 34th AAAI Conference on Artificial Intelligence, 34:13681–84. Association for the Advancement of Artificial Intelligence, 2020. https://doi.org/10.1609/aaai.v34i09.7120.
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2020 | Published | Conference Paper | IST-REx-ID: 14187 |

Négiar, Geoffrey, Gideon Dresdner, Alicia Tsai, Laurent El Ghaoui, Francesco Locatello, Robert M. Freund, and Fabian Pedregosa. “Stochastic Frank-Wolfe for Constrained Finite-Sum Minimization.” In Proceedings of the 37th International Conference on Machine Learning, 119:7253–62, 2020.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
2020 | Published | Conference Paper | IST-REx-ID: 14188 |

Locatello, Francesco, Ben Poole, Gunnar Rätsch, Bernhard Schölkopf, Olivier Bachem, and Michael Tschannen. “Weakly-Supervised Disentanglement without Compromises.” In Proceedings of the 37th International Conference on Machine Learning, 119:6348–6359, 2020.
[Preprint]
View
| Download Preprint (ext.)
| arXiv
2020 | Published | Journal Article | IST-REx-ID: 14195 |

Locatello, Francesco, Stefan Bauer, Mario Lucic, Gunnar Rätsch, Sylvain Gelly, Bernhard Schölkopf, and Olivier Bachem. “A Sober Look at the Unsupervised Learning of Disentangled Representations and Their Evaluation.” Journal of Machine Learning Research. MIT Press, 2020.
[Published Version]
View
| Download Published Version (ext.)
| arXiv
- 1
- 2
- 3 (current)
- 4
- 5