Bridging Scales in Random Materials
Project Period: 2021-03-01 – 2026-02-28
Externally Funded
Acronym
RandSCALES
Principal Investigator
Julian L Fischer
Department(s)
Fischer Group
Grant Number
948819
Funding Organisation
EC/H2020
7 Publications
2021 | Preprint | IST-REx-ID: 10011 |

A new varifold solution concept for mean curvature flow: Convergence of the Allen-Cahn equation and weak-strong uniqueness
S. Hensel, T. Laux, ArXiv (n.d.).
View
| Download Preprint (ext.)
| arXiv
S. Hensel, T. Laux, ArXiv (n.d.).
2021 | Preprint | IST-REx-ID: 10013 |

Weak-strong uniqueness for the mean curvature flow of double bubbles
S. Hensel, T. Laux, ArXiv (n.d.).
View
| Files available
| Download Preprint (ext.)
| arXiv
S. Hensel, T. Laux, ArXiv (n.d.).
2022 | Journal Article | IST-REx-ID: 11842 |

Weak-strong uniqueness for the Navier–Stokes equation for two fluids with ninety degree contact angle and same viscosities
S. Hensel, A. Marveggio, Journal of Mathematical Fluid Mechanics 24 (2022).
View
| Files available
| DOI
| arXiv
S. Hensel, A. Marveggio, Journal of Mathematical Fluid Mechanics 24 (2022).
2022 | Journal Article | IST-REx-ID: 12079 |

Convergence rates for the Allen–Cahn equation with boundary contact energy: The non-perturbative regime
S. Hensel, M. Moser, Calculus of Variations and Partial Differential Equations 61 (2022).
View
| Files available
| DOI
S. Hensel, M. Moser, Calculus of Variations and Partial Differential Equations 61 (2022).
2022 | Preprint | IST-REx-ID: 12486 |

Delayed blow-up and enhanced diffusion by transport noise for systems of reaction-diffusion equations
A. Agresti, ArXiv (n.d.).
View
| DOI
| Download Preprint (ext.)
| arXiv
A. Agresti, ArXiv (n.d.).
2022 | Preprint | IST-REx-ID: 12485 |

The critical variational setting for stochastic evolution equations
A. Agresti, M. Veraar, ArXiv (n.d.).
View
| DOI
| Download Preprint (ext.)
| arXiv
A. Agresti, M. Veraar, ArXiv (n.d.).
2021 | Thesis | IST-REx-ID: 10007 |

Curvature driven interface evolution: Uniqueness properties of weak solution concepts
S. Hensel, Curvature Driven Interface Evolution: Uniqueness Properties of Weak Solution Concepts, IST Austria, 2021.
View
| Files available
| DOI
S. Hensel, Curvature Driven Interface Evolution: Uniqueness Properties of Weak Solution Concepts, IST Austria, 2021.