AXR1 affects DNA methylation independently of its role in regulating meiotic crossover localization

Christophorou N, She W, Long J, Hurel A, Beaubiat S, Idir Y, Tagliaro-Jahns M, Chambon A, Solier V, Vezon D, Grelon M, Feng X, Bouché N, Mézard C. 2020. AXR1 affects DNA methylation independently of its role in regulating meiotic crossover localization. PLOS Genetics. 16(6), e1008894.

Download (ext.)

Journal Article | Published | English

Scopus indexed
Author
Christophorou, Nicolas; She, Wenjing; Long, Jincheng; Hurel, Aurélie; Beaubiat, Sébastien; Idir, Yassir; Tagliaro-Jahns, Marina; Chambon, Aurélie; Solier, Victor; Vezon, Daniel; Grelon, Mathilde; Feng, XiaoqiISTA
All
Department
Abstract
Meiotic crossovers (COs) are important for reshuffling genetic information between homologous chromosomes and they are essential for their correct segregation. COs are unevenly distributed along chromosomes and the underlying mechanisms controlling CO localization are not well understood. We previously showed that meiotic COs are mis-localized in the absence of AXR1, an enzyme involved in the neddylation/rubylation protein modification pathway in Arabidopsis thaliana. Here, we report that in axr1-/-, male meiocytes show a strong defect in chromosome pairing whereas the formation of the telomere bouquet is not affected. COs are also redistributed towards subtelomeric chromosomal ends where they frequently form clusters, in contrast to large central regions depleted in recombination. The CO suppressed regions correlate with DNA hypermethylation of transposable elements (TEs) in the CHH context in axr1-/- meiocytes. Through examining somatic methylomes, we found axr1-/- affects DNA methylation in a plant, causing hypermethylation in all sequence contexts (CG, CHG and CHH) in TEs. Impairment of the main pathways involved in DNA methylation is epistatic over axr1-/- for DNA methylation in somatic cells but does not restore regular chromosome segregation during meiosis. Collectively, our findings reveal that the neddylation pathway not only regulates hormonal perception and CO distribution but is also, directly or indirectly, a major limiting pathway of TE DNA methylation in somatic cells.
Publishing Year
Date Published
2020-06-29
Journal Title
PLOS Genetics
Acknowledgement
The authors wish to thank Cécile Raynaud, Eric Jenczewski, Rajeev Kumar, Raphaël Mercier and Jean Molinier for critical reading of the manuscript.
Volume
16
Issue
6
Article Number
e1008894
ISSN
IST-REx-ID

Cite this

Christophorou N, She W, Long J, et al. AXR1 affects DNA methylation independently of its role in regulating meiotic crossover localization. PLOS Genetics. 2020;16(6). doi:10.1371/journal.pgen.1008894
Christophorou, N., She, W., Long, J., Hurel, A., Beaubiat, S., Idir, Y., … Mézard, C. (2020). AXR1 affects DNA methylation independently of its role in regulating meiotic crossover localization. PLOS Genetics. Public Library of Science (PLoS). https://doi.org/10.1371/journal.pgen.1008894
Christophorou, Nicolas, Wenjing She, Jincheng Long, Aurélie Hurel, Sébastien Beaubiat, Yassir Idir, Marina Tagliaro-Jahns, et al. “AXR1 Affects DNA Methylation Independently of Its Role in Regulating Meiotic Crossover Localization.” PLOS Genetics. Public Library of Science (PLoS), 2020. https://doi.org/10.1371/journal.pgen.1008894.
N. Christophorou et al., “AXR1 affects DNA methylation independently of its role in regulating meiotic crossover localization,” PLOS Genetics, vol. 16, no. 6. Public Library of Science (PLoS), 2020.
Christophorou N, She W, Long J, Hurel A, Beaubiat S, Idir Y, Tagliaro-Jahns M, Chambon A, Solier V, Vezon D, Grelon M, Feng X, Bouché N, Mézard C. 2020. AXR1 affects DNA methylation independently of its role in regulating meiotic crossover localization. PLOS Genetics. 16(6), e1008894.
Christophorou, Nicolas, et al. “AXR1 Affects DNA Methylation Independently of Its Role in Regulating Meiotic Crossover Localization.” PLOS Genetics, vol. 16, no. 6, e1008894, Public Library of Science (PLoS), 2020, doi:10.1371/journal.pgen.1008894.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data ISTA Research Explorer

Sources

PMID: 32598340
PubMed | Europe PMC

Search this title in

Google Scholar