Visualising the cytoskeletal machinery in neuronal growth cones using cryo-electron tomography

Atherton J, Stouffer MA, Francis F, Moores CA. 2022. Visualising the cytoskeletal machinery in neuronal growth cones using cryo-electron tomography. Journal of Cell Science. 135(7), 259234.

Download
OA 2022_JourCellBiology_Atherton.pdf 13.87 MB

Journal Article | Published | English

Scopus indexed
Author
Atherton, Joseph; Stouffer, Melissa AISTA; Francis, Fiona; Moores, Carolyn A.
Department
Abstract
Neurons extend axons to form the complex circuitry of the mature brain. This depends on the coordinated response and continuous remodelling of the microtubule and F-actin networks in the axonal growth cone. Growth cone architecture remains poorly understood at nanoscales. We therefore investigated mouse hippocampal neuron growth cones using cryo-electron tomography to directly visualise their three-dimensional subcellular architecture with molecular detail. Our data showed that the hexagonal arrays of actin bundles that form filopodia penetrate and terminate deep within the growth cone interior. We directly observed the modulation of these and other growth cone actin bundles by alteration of individual F-actin helical structures. Microtubules with blunt, slightly flared or gently curved ends predominated in the growth cone, frequently contained lumenal particles and exhibited lattice defects. Investigation of the effect of absence of doublecortin, a neurodevelopmental cytoskeleton regulator, on growth cone cytoskeleton showed no major anomalies in overall growth cone organisation or in F-actin subpopulations. However, our data suggested that microtubules sustained more structural defects, highlighting the importance of microtubule integrity during growth cone migration.
Keywords
Publishing Year
Date Published
2022-04-01
Journal Title
Journal of Cell Science
Acknowledgement
J.A. was supported by a grant from the Medical Research Council (MRC), UK (MR/R000352/1) to C.A.M. Cryo-EM data were collected on equipment funded by the Wellcome Trust, UK (079605/Z/06/Z) and the Biotechnology and Biological Sciences Research Council (BBSRC) UK (BB/L014211/1). F.F.’s salary and institute were supported by Inserm (Institut National de la Santé et de la Recherche Médicale), CNRS (Centre National de la Recherche Scientifique) and Sorbonne Université. F.F.’s group was particularly supported by Agence Nationale de la Recherche (ANR-16-CE16-0011-03) and Seventh Framework Programme (EUHEALTH- 2013, DESIRE, N° 60253; also funding M.S.’s salary) and the European Cooperation in Science and Technology (COST Action CA16118). Open Access funding provided by Birkbeck College: Birkbeck University of London. Deposited in PMC for immediate release.
Volume
135
Issue
7
Article Number
259234
ISSN
eISSN
IST-REx-ID

Cite this

Atherton J, Stouffer MA, Francis F, Moores CA. Visualising the cytoskeletal machinery in neuronal growth cones using cryo-electron tomography. Journal of Cell Science. 2022;135(7). doi:10.1242/jcs.259234
Atherton, J., Stouffer, M. A., Francis, F., & Moores, C. A. (2022). Visualising the cytoskeletal machinery in neuronal growth cones using cryo-electron tomography. Journal of Cell Science. The Company of Biologists. https://doi.org/10.1242/jcs.259234
Atherton, Joseph, Melissa A Stouffer, Fiona Francis, and Carolyn A. Moores. “Visualising the Cytoskeletal Machinery in Neuronal Growth Cones Using Cryo-Electron Tomography.” Journal of Cell Science. The Company of Biologists, 2022. https://doi.org/10.1242/jcs.259234.
J. Atherton, M. A. Stouffer, F. Francis, and C. A. Moores, “Visualising the cytoskeletal machinery in neuronal growth cones using cryo-electron tomography,” Journal of Cell Science, vol. 135, no. 7. The Company of Biologists, 2022.
Atherton J, Stouffer MA, Francis F, Moores CA. 2022. Visualising the cytoskeletal machinery in neuronal growth cones using cryo-electron tomography. Journal of Cell Science. 135(7), 259234.
Atherton, Joseph, et al. “Visualising the Cytoskeletal Machinery in Neuronal Growth Cones Using Cryo-Electron Tomography.” Journal of Cell Science, vol. 135, no. 7, 259234, The Company of Biologists, 2022, doi:10.1242/jcs.259234.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2023-01-30
MD5 Checksum
4346ed32cb7c89a8ca051c7da68a9a1c


Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Sources

PMID: 35383828
PubMed | Europe PMC

Search this title in

Google Scholar