Loss of ETV1/ER81 in motor neurons leads to reduced monosynaptic inputs from proprioceptive sensory neurons
Ladle DR, Hippenmeyer S. 2023. Loss of ETV1/ER81 in motor neurons leads to reduced monosynaptic inputs from proprioceptive sensory neurons. Journal of Neurophysiology. 129(3), 501–512.
Download
No fulltext has been uploaded. References only!
Journal Article
| Published
| English
Scopus indexed
Author
Ladle, David R.;
Hippenmeyer, SimonISTA
Department
Abstract
Presynaptic inputs determine the pattern of activation of postsynaptic neurons in a neural circuit. Molecular and genetic pathways that regulate the selective formation of subsets of presynaptic inputs are largely unknown, despite significant understanding of the general process of synaptogenesis. In this study, we have begun to identify such factors using the spinal monosynaptic stretch reflex circuit as a model system. In this neuronal circuit, Ia proprioceptive afferents establish monosynaptic connections with spinal motor neurons that project to the same muscle (termed homonymous connections) or muscles with related or synergistic function. However, monosynaptic connections are not formed with motor neurons innervating muscles with antagonistic functions. The ETS transcription factor ER81 (also known as ETV1) is expressed by all proprioceptive afferents, but only a small set of motor neuron pools in the lumbar spinal cord of the mouse. Here we use conditional mouse genetic techniques to eliminate Er81 expression selectively from motor neurons. We find that ablation of Er81 in motor neurons reduces synaptic inputs from proprioceptive afferents conveying information from homonymous and synergistic muscles, with no change observed in the connectivity pattern from antagonistic proprioceptive afferents. In summary, these findings suggest a role for ER81 in defined motor neuron pools to control the assembly of specific presynaptic inputs and thereby influence the profile of activation of these motor neurons.
Keywords
Publishing Year
Date Published
2023-03-01
Journal Title
Journal of Neurophysiology
Publisher
American Physiological Society
Acknowledgement
The authors gratefully thank Dr. Silvia Arber, University of Basel and Friedrich Miescher Institute for Biomedical Research, for support and in whose lab the data were collected. For advice on statistical analysis, we thank Michael Bottomley from the Statistical Consulting Center, College of Science and Mathematics, Wright State University.
Volume
129
Issue
3
Page
501-512
ISSN
eISSN
IST-REx-ID
Cite this
Ladle DR, Hippenmeyer S. Loss of ETV1/ER81 in motor neurons leads to reduced monosynaptic inputs from proprioceptive sensory neurons. Journal of Neurophysiology. 2023;129(3):501-512. doi:10.1152/jn.00172.2022
Ladle, D. R., & Hippenmeyer, S. (2023). Loss of ETV1/ER81 in motor neurons leads to reduced monosynaptic inputs from proprioceptive sensory neurons. Journal of Neurophysiology. American Physiological Society. https://doi.org/10.1152/jn.00172.2022
Ladle, David R., and Simon Hippenmeyer. “Loss of ETV1/ER81 in Motor Neurons Leads to Reduced Monosynaptic Inputs from Proprioceptive Sensory Neurons.” Journal of Neurophysiology. American Physiological Society, 2023. https://doi.org/10.1152/jn.00172.2022.
D. R. Ladle and S. Hippenmeyer, “Loss of ETV1/ER81 in motor neurons leads to reduced monosynaptic inputs from proprioceptive sensory neurons,” Journal of Neurophysiology, vol. 129, no. 3. American Physiological Society, pp. 501–512, 2023.
Ladle DR, Hippenmeyer S. 2023. Loss of ETV1/ER81 in motor neurons leads to reduced monosynaptic inputs from proprioceptive sensory neurons. Journal of Neurophysiology. 129(3), 501–512.
Ladle, David R., and Simon Hippenmeyer. “Loss of ETV1/ER81 in Motor Neurons Leads to Reduced Monosynaptic Inputs from Proprioceptive Sensory Neurons.” Journal of Neurophysiology, vol. 129, no. 3, American Physiological Society, 2023, pp. 501–12, doi:10.1152/jn.00172.2022.
Export
Marked PublicationsOpen Data ISTA Research Explorer
Web of Science
View record in Web of Science®Sources
PMID: 36695533
PubMed | Europe PMC