Tracing isomanifolds in Rd in time polynomial in d using Coxeter–Freudenthal–Kuhn triangulations
Boissonnat JD, Kachanovich S, Wintraecken M. 2023. Tracing isomanifolds in Rd in time polynomial in d using Coxeter–Freudenthal–Kuhn triangulations. SIAM Journal on Computing. 52(2), 452–486.
Download (ext.)
https://hal-emse.ccsd.cnrs.fr/3IA-COTEDAZUR/hal-04083489v1
[Submitted Version]
Journal Article
| Published
| English
Scopus indexed
Author
Boissonnat, Jean Daniel;
Kachanovich, Siargey;
Wintraecken, MathijsISTA
Corresponding author has ISTA affiliation
Department
Abstract
Isomanifolds are the generalization of isosurfaces to arbitrary dimension and codimension, i.e., submanifolds of Rd defined as the zero set of some multivariate multivalued smooth function f:Rd→Rd−n, where n is the intrinsic dimension of the manifold. A natural way to approximate a smooth isomanifold M=f−1(0) is to consider its piecewise linear (PL) approximation M^
based on a triangulation T of the ambient space Rd. In this paper, we describe a simple algorithm to trace isomanifolds from a given starting point. The algorithm works for arbitrary dimensions n and d, and any precision D. Our main result is that, when f (or M) has bounded complexity, the complexity of the algorithm is polynomial in d and δ=1/D (and unavoidably exponential in n). Since it is known that for δ=Ω(d2.5), M^ is O(D2)-close and isotopic to M
, our algorithm produces a faithful PL-approximation of isomanifolds of bounded complexity in time polynomial in d. Combining this algorithm with dimensionality reduction techniques, the dependency on d in the size of M^ can be completely removed with high probability. We also show that the algorithm can handle isomanifolds with boundary and, more generally, isostratifolds. The algorithm for isomanifolds with boundary has been implemented and experimental results are reported, showing that it is practical and can handle cases that are far ahead of the state-of-the-art.
Publishing Year
Date Published
2023-04-30
Journal Title
SIAM Journal on Computing
Publisher
Society for Industrial and Applied Mathematics
Acknowledgement
The authors have received funding from the European Research Council under the European Union's ERC grant greement 339025 GUDHI (Algorithmic Foundations of Geometric Un-derstanding in Higher Dimensions). The first author was supported by the French government,through the 3IA C\^ote d'Azur Investments in the Future project managed by the National ResearchAgency (ANR) with the reference ANR-19-P3IA-0002. The third author was supported by the Eu-ropean Union's Horizon 2020 research and innovation programme under the Marie Sk\lodowska-Curiegrant agreement 754411 and the FWF (Austrian Science Fund) grant M 3073.
Volume
52
Issue
2
Page
452-486
ISSN
eISSN
IST-REx-ID
Cite this
Boissonnat JD, Kachanovich S, Wintraecken M. Tracing isomanifolds in Rd in time polynomial in d using Coxeter–Freudenthal–Kuhn triangulations. SIAM Journal on Computing. 2023;52(2):452-486. doi:10.1137/21M1412918
Boissonnat, J. D., Kachanovich, S., & Wintraecken, M. (2023). Tracing isomanifolds in Rd in time polynomial in d using Coxeter–Freudenthal–Kuhn triangulations. SIAM Journal on Computing. Society for Industrial and Applied Mathematics. https://doi.org/10.1137/21M1412918
Boissonnat, Jean Daniel, Siargey Kachanovich, and Mathijs Wintraecken. “Tracing Isomanifolds in Rd in Time Polynomial in d Using Coxeter–Freudenthal–Kuhn Triangulations.” SIAM Journal on Computing. Society for Industrial and Applied Mathematics, 2023. https://doi.org/10.1137/21M1412918.
J. D. Boissonnat, S. Kachanovich, and M. Wintraecken, “Tracing isomanifolds in Rd in time polynomial in d using Coxeter–Freudenthal–Kuhn triangulations,” SIAM Journal on Computing, vol. 52, no. 2. Society for Industrial and Applied Mathematics, pp. 452–486, 2023.
Boissonnat JD, Kachanovich S, Wintraecken M. 2023. Tracing isomanifolds in Rd in time polynomial in d using Coxeter–Freudenthal–Kuhn triangulations. SIAM Journal on Computing. 52(2), 452–486.
Boissonnat, Jean Daniel, et al. “Tracing Isomanifolds in Rd in Time Polynomial in d Using Coxeter–Freudenthal–Kuhn Triangulations.” SIAM Journal on Computing, vol. 52, no. 2, Society for Industrial and Applied Mathematics, 2023, pp. 452–86, doi:10.1137/21M1412918.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Open Access
Material in ISTA:
Earlier Version
Export
Marked PublicationsOpen Data ISTA Research Explorer