Earlier Version
Tracing isomanifolds in Rd in time polynomial in d using Coxeter-Freudenthal-Kuhn triangulations
Boissonnat J-D, Kachanovich S, Wintraecken M. 2021. Tracing isomanifolds in Rd in time polynomial in d using Coxeter-Freudenthal-Kuhn triangulations. 37th International Symposium on Computational Geometry (SoCG 2021). SoCG: Symposium on Computational GeometryLeibniz International Proceedings in Informatics (LIPIcs), LIPIcs, vol. 189, 17:1-17:16.
Download
Conference Paper
| Published
| English
Author
Boissonnat, Jean-Daniel;
Kachanovich, Siargey;
Wintraecken, MathijsISTA
Department
Series Title
LIPIcs
Abstract
Isomanifolds are the generalization of isosurfaces to arbitrary dimension and codimension, i.e. submanifolds of ℝ^d defined as the zero set of some multivariate multivalued smooth function f: ℝ^d → ℝ^{d-n}, where n is the intrinsic dimension of the manifold. A natural way to approximate a smooth isomanifold M is to consider its Piecewise-Linear (PL) approximation M̂ based on a triangulation 𝒯 of the ambient space ℝ^d. In this paper, we describe a simple algorithm to trace isomanifolds from a given starting point. The algorithm works for arbitrary dimensions n and d, and any precision D. Our main result is that, when f (or M) has bounded complexity, the complexity of the algorithm is polynomial in d and δ = 1/D (and unavoidably exponential in n). Since it is known that for δ = Ω (d^{2.5}), M̂ is O(D²)-close and isotopic to M, our algorithm produces a faithful PL-approximation of isomanifolds of bounded complexity in time polynomial in d. Combining this algorithm with dimensionality reduction techniques, the dependency on d in the size of M̂ can be completely removed with high probability. We also show that the algorithm can handle isomanifolds with boundary and, more generally, isostratifolds. The algorithm for isomanifolds with boundary has been implemented and experimental results are reported, showing that it is practical and can handle cases that are far ahead of the state-of-the-art.
Publishing Year
Date Published
2021-06-02
Proceedings Title
37th International Symposium on Computational Geometry (SoCG 2021)
Acknowledgement
We thank Dominique Attali, Guilherme de Fonseca, Arijit Ghosh, Vincent Pilaud and Aurélien Alvarez for their comments and suggestions. We also acknowledge the reviewers.
Volume
189
Page
17:1-17:16
Conference
SoCG: Symposium on Computational Geometry
Conference Location
Virtual
Conference Date
2021-06-07 – 2021-06-11
ISBN
ISSN
IST-REx-ID
Cite this
Boissonnat J-D, Kachanovich S, Wintraecken M. Tracing isomanifolds in Rd in time polynomial in d using Coxeter-Freudenthal-Kuhn triangulations. In: 37th International Symposium on Computational Geometry (SoCG 2021). Vol 189. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2021:17:1-17:16. doi:10.4230/LIPIcs.SoCG.2021.17
Boissonnat, J.-D., Kachanovich, S., & Wintraecken, M. (2021). Tracing isomanifolds in Rd in time polynomial in d using Coxeter-Freudenthal-Kuhn triangulations. In 37th International Symposium on Computational Geometry (SoCG 2021) (Vol. 189, p. 17:1-17:16). Dagstuhl, Germany: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2021.17
Boissonnat, Jean-Daniel, Siargey Kachanovich, and Mathijs Wintraecken. “Tracing Isomanifolds in Rd in Time Polynomial in d Using Coxeter-Freudenthal-Kuhn Triangulations.” In 37th International Symposium on Computational Geometry (SoCG 2021), 189:17:1-17:16. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. https://doi.org/10.4230/LIPIcs.SoCG.2021.17.
J.-D. Boissonnat, S. Kachanovich, and M. Wintraecken, “Tracing isomanifolds in Rd in time polynomial in d using Coxeter-Freudenthal-Kuhn triangulations,” in 37th International Symposium on Computational Geometry (SoCG 2021), Virtual, 2021, vol. 189, p. 17:1-17:16.
Boissonnat J-D, Kachanovich S, Wintraecken M. 2021. Tracing isomanifolds in Rd in time polynomial in d using Coxeter-Freudenthal-Kuhn triangulations. 37th International Symposium on Computational Geometry (SoCG 2021). SoCG: Symposium on Computational GeometryLeibniz International Proceedings in Informatics (LIPIcs), LIPIcs, vol. 189, 17:1-17:16.
Boissonnat, Jean-Daniel, et al. “Tracing Isomanifolds in Rd in Time Polynomial in d Using Coxeter-Freudenthal-Kuhn Triangulations.” 37th International Symposium on Computational Geometry (SoCG 2021), vol. 189, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, p. 17:1-17:16, doi:10.4230/LIPIcs.SoCG.2021.17.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
LIPIcs-SoCG-2021-17.pdf
1.97 MB
Access Level
Open Access
Date Uploaded
2021-06-02
MD5 Checksum
c322aa48d5d35a35877896cc565705b6
Material in ISTA:
Later Version