Neuronal HSF-1 coordinates the propagation of fat desaturation across tissues to enable adaptation to high temperatures in C. elegans

Chauve L, Hodge F, Murdoch S, Masoudzadeh F, Mann H-J, Lopez-Clavijo A, Okkenhaug H, West G, Sousa BC, Segonds-Pichon A, Li C, Wingett S, Kienberger H, Kleigrewe K, de Bono M, Wakelam M, Casanueva O. 2021. Neuronal HSF-1 coordinates the propagation of fat desaturation across tissues to enable adaptation to high temperatures in C. elegans, Zenodo, 10.5281/ZENODO.5519410.

Download (ext.)

Research Data Reference
Creator
Chauve, Laetitia; Hodge, Francesca; Murdoch, Sharlene; Masoudzadeh, Fatemah; Mann, Harry-Jack; Lopez-Clavijo, Andrea; Okkenhaug, Hanneke; West, Greg; Sousa, Bebiana C.; Segonds-Pichon, Anne; Li, Cheryl; Wingett, Steven
All
Department
Abstract
To survive elevated temperatures, ectotherms adjust the fluidity of membranes by fine-tuning lipid desaturation levels in a process previously described to be cell-autonomous. We have discovered that, in Caenorhabditis elegans, neuronal Heat shock Factor 1 (HSF-1), the conserved master regulator of the heat shock response (HSR)- causes extensive fat remodelling in peripheral tissues. These changes include a decrease in fat desaturase and acid lipase expression in the intestine, and a global shift in the saturation levels of plasma membrane’s phospholipids. The observed remodelling of plasma membrane is in line with ectothermic adaptive responses and gives worms a cumulative advantage to warm temperatures. We have determined that at least six TAX-2/TAX-4 cGMP gated channel expressing sensory neurons and TGF-β/BMP are required for signalling across tissues to modulate fat desaturation. We also find neuronal hsf-1 is not only sufficient but also partially necessary to control the fat remodelling response and for survival at warm temperatures. This is the first study to show that a thermostat-based mechanism can cell non-autonomously coordinate membrane saturation and composition across tissues in a multicellular animal.
Publishing Year
Date Published
2021-12-25
IST-REx-ID

Cite this

Chauve L, Hodge F, Murdoch S, et al. Neuronal HSF-1 coordinates the propagation of fat desaturation across tissues to enable adaptation to high temperatures in C. elegans. 2021. doi:10.5281/ZENODO.5519410
Chauve, L., Hodge, F., Murdoch, S., Masoudzadeh, F., Mann, H.-J., Lopez-Clavijo, A., … Casanueva, O. (2021). Neuronal HSF-1 coordinates the propagation of fat desaturation across tissues to enable adaptation to high temperatures in C. elegans. Zenodo. https://doi.org/10.5281/ZENODO.5519410
Chauve, Laetitia, Francesca Hodge, Sharlene Murdoch, Fatemah Masoudzadeh, Harry-Jack Mann, Andrea Lopez-Clavijo, Hanneke Okkenhaug, et al. “Neuronal HSF-1 Coordinates the Propagation of Fat Desaturation across Tissues to Enable Adaptation to High Temperatures in C. Elegans.” Zenodo, 2021. https://doi.org/10.5281/ZENODO.5519410.
L. Chauve et al., “Neuronal HSF-1 coordinates the propagation of fat desaturation across tissues to enable adaptation to high temperatures in C. elegans.” Zenodo, 2021.
Chauve L, Hodge F, Murdoch S, Masoudzadeh F, Mann H-J, Lopez-Clavijo A, Okkenhaug H, West G, Sousa BC, Segonds-Pichon A, Li C, Wingett S, Kienberger H, Kleigrewe K, de Bono M, Wakelam M, Casanueva O. 2021. Neuronal HSF-1 coordinates the propagation of fat desaturation across tissues to enable adaptation to high temperatures in C. elegans, Zenodo, 10.5281/ZENODO.5519410.
Chauve, Laetitia, et al. Neuronal HSF-1 Coordinates the Propagation of Fat Desaturation across Tissues to Enable Adaptation to High Temperatures in C. Elegans. Zenodo, 2021, doi:10.5281/ZENODO.5519410.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar