Self‐complementary zwitterionic peptides direct nanoparticle assembly and enable enzymatic selection of endocytic pathways

Huang RH, Nayeem N, He Y, Morales J, Graham D, Klajn R, Contel M, O’Brien S, Ulijn RV. 2022. Self‐complementary zwitterionic peptides direct nanoparticle assembly and enable enzymatic selection of endocytic pathways. Advanced Materials. 34(1), 2104962.


Journal Article | Published | English

Scopus indexed
Author
Huang, Richard H.; Nayeem, Nazia; He, Ye; Morales, Jorge; Graham, Duncan; Klajn, RafalISTA; Contel, Maria; O'Brien, Stephen; Ulijn, Rein V.
Abstract
Supramolecular self-assembly in biological systems holds promise to convert and amplify disease-specific signals to physical or mechanical signals that can direct cell fate. However, it remains challenging to design physiologically stable self-assembling systems that demonstrate tunable and predictable behavior. Here, the use of zwitterionic tetrapeptide modalities to direct nanoparticle assembly under physiological conditions is reported. The self-assembly of gold nanoparticles can be activated by enzymatic unveiling of surface-bound zwitterionic tetrapeptides through matrix metalloprotease-9 (MMP-9), which is overexpressed by cancer cells. This robust nanoparticle assembly is achieved by multivalent, self-complementary interactions of the zwitterionic tetrapeptides. In cancer cells that overexpress MMP-9, the nanoparticle assembly process occurs near the cell membrane and causes size-induced selection of cellular uptake mechanism, resulting in diminished cell growth. The enzyme responsiveness, and therefore, indirectly, the uptake route of the system can be programmed by customizing the peptide sequence: a simple inversion of the two amino acids at the cleavage site completely inactivates the enzyme responsiveness, self-assembly, and consequently changes the endocytic pathway. This robust self-complementary, zwitterionic peptide design demonstrates the use of enzyme-activated electrostatic side-chain patterns as powerful and customizable peptide modalities to program nanoparticle self-assembly and alter cellular response in biological context.
Publishing Year
Date Published
2022-01-06
Journal Title
Advanced Materials
Volume
34
Issue
1
Article Number
2104962
ISSN
eISSN
IST-REx-ID

Cite this

Huang RH, Nayeem N, He Y, et al. Self‐complementary zwitterionic peptides direct nanoparticle assembly and enable enzymatic selection of endocytic pathways. Advanced Materials. 2022;34(1). doi:10.1002/adma.202104962
Huang, R. H., Nayeem, N., He, Y., Morales, J., Graham, D., Klajn, R., … Ulijn, R. V. (2022). Self‐complementary zwitterionic peptides direct nanoparticle assembly and enable enzymatic selection of endocytic pathways. Advanced Materials. Wiley. https://doi.org/10.1002/adma.202104962
Huang, Richard H., Nazia Nayeem, Ye He, Jorge Morales, Duncan Graham, Rafal Klajn, Maria Contel, Stephen O’Brien, and Rein V. Ulijn. “Self‐complementary Zwitterionic Peptides Direct Nanoparticle Assembly and Enable Enzymatic Selection of Endocytic Pathways.” Advanced Materials. Wiley, 2022. https://doi.org/10.1002/adma.202104962.
R. H. Huang et al., “Self‐complementary zwitterionic peptides direct nanoparticle assembly and enable enzymatic selection of endocytic pathways,” Advanced Materials, vol. 34, no. 1. Wiley, 2022.
Huang RH, Nayeem N, He Y, Morales J, Graham D, Klajn R, Contel M, O’Brien S, Ulijn RV. 2022. Self‐complementary zwitterionic peptides direct nanoparticle assembly and enable enzymatic selection of endocytic pathways. Advanced Materials. 34(1), 2104962.
Huang, Richard H., et al. “Self‐complementary Zwitterionic Peptides Direct Nanoparticle Assembly and Enable Enzymatic Selection of Endocytic Pathways.” Advanced Materials, vol. 34, no. 1, 2104962, Wiley, 2022, doi:10.1002/adma.202104962.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data ISTA Research Explorer

Sources

PMID: 34668253
PubMed | Europe PMC

Search this title in

Google Scholar