A general approximation for the dynamics of quantitative traits

Bodova K, Tkačik G, Barton NH. 2016. A general approximation for the dynamics of quantitative traits. Genetics. 202(4), 1523–1548.

Download (ext.)

Journal Article | Published | English

Scopus indexed

Corresponding author has ISTA affiliation

Abstract
Selection, mutation, and random drift affect the dynamics of allele frequencies and consequently of quantitative traits. While the macroscopic dynamics of quantitative traits can be measured, the underlying allele frequencies are typically unobserved. Can we understand how the macroscopic observables evolve without following these microscopic processes? This problem has been studied previously by analogy with statistical mechanics: the allele frequency distribution at each time point is approximated by the stationary form, which maximizes entropy. We explore the limitations of this method when mutation is small (4Nμ < 1) so that populations are typically close to fixation, and we extend the theory in this regime to account for changes in mutation strength. We consider a single diallelic locus either under directional selection or with overdominance and then generalize to multiple unlinked biallelic loci with unequal effects. We find that the maximum-entropy approximation is remarkably accurate, even when mutation and selection change rapidly.
Publishing Year
Date Published
2016-04-06
Journal Title
Genetics
Publisher
Genetics Society of America
Volume
202
Issue
4
Page
1523 - 1548
IST-REx-ID

Cite this

Bodova K, Tkačik G, Barton NH. A general approximation for the dynamics of quantitative traits. Genetics. 2016;202(4):1523-1548. doi:10.1534/genetics.115.184127
Bodova, K., Tkačik, G., & Barton, N. H. (2016). A general approximation for the dynamics of quantitative traits. Genetics. Genetics Society of America. https://doi.org/10.1534/genetics.115.184127
Bodova, Katarina, Gašper Tkačik, and Nicholas H Barton. “A General Approximation for the Dynamics of Quantitative Traits.” Genetics. Genetics Society of America, 2016. https://doi.org/10.1534/genetics.115.184127.
K. Bodova, G. Tkačik, and N. H. Barton, “A general approximation for the dynamics of quantitative traits,” Genetics, vol. 202, no. 4. Genetics Society of America, pp. 1523–1548, 2016.
Bodova K, Tkačik G, Barton NH. 2016. A general approximation for the dynamics of quantitative traits. Genetics. 202(4), 1523–1548.
Bodova, Katarina, et al. “A General Approximation for the Dynamics of Quantitative Traits.” Genetics, vol. 202, no. 4, Genetics Society of America, 2016, pp. 1523–48, doi:10.1534/genetics.115.184127.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]

Link(s) to Main File(s)
Access Level
OA Open Access

Export

Marked Publications

Open Data ISTA Research Explorer

Sources

arXiv 1510.08344

Search this title in

Google Scholar