The genetic basis of a recent transition to live-bearing in marine snails

Stankowski S, Zagrodzka ZB, Garlovsky MD, Pal A, Shipilina D, Garcia Castillo DF, Lifchitz H, Le Moan A, Leder E, Reeve J, Johannesson K, Westram AM, Butlin RK. 2024. The genetic basis of a recent transition to live-bearing in marine snails. Science. 383(6678), 114–119.

Download
No fulltext has been uploaded. References only!

Journal Article | Published | English

Scopus indexed
Author
Stankowski, SeanISTA; Zagrodzka, Zuzanna B.; Garlovsky, Martin D.; Pal, ArkaISTA ; Shipilina, DariaISTA ; Garcia Castillo, Diego FernandoISTA; Lifchitz, HilaISTA; Le Moan, Alan; Leder, Erica; Reeve, James; Johannesson, Kerstin; Westram, Anja MISTA
All
Abstract
Key innovations are fundamental to biological diversification, but their genetic basis is poorly understood. A recent transition from egg-laying to live-bearing in marine snails (Littorina spp.) provides the opportunity to study the genetic architecture of an innovation that has evolved repeatedly across animals. Individuals do not cluster by reproductive mode in a genome-wide phylogeny, but local genealogical analysis revealed numerous small genomic regions where all live-bearers carry the same core haplotype. Candidate regions show evidence for live-bearer–specific positive selection and are enriched for genes that are differentially expressed between egg-laying and live-bearing reproductive systems. Ages of selective sweeps suggest that live-bearer–specific alleles accumulated over more than 200,000 generations. Our results suggest that new functions evolve through the recruitment of many alleles rather than in a single evolutionary step.
Publishing Year
Date Published
2024-01-05
Journal Title
Science
Acknowledgement
We thank J. Galindo, M. Montaño-Rendón, N. Mikhailova, A. Blakeslee, E. Arnason, and P. Kemppainen for providing samples; R. Turney, G. Sotelo, J. Larsson, T. Broquet, and S. Loisel for help collecting samples; Science Animated for providing the snail cartoons shown in Fig. 1; M. Dunning for help in developing bioinformatic pipelines; R. Faria, H. Morales, and V. Sousa for advice; and M. Hahn, J. Slate, M. Ravinet, J. Raeymaekers, A. Comeault, and N. Barton for feedback on a draft manuscript. This work was supported by the Natural Environment Research Council (grant NE/P001610/1 to R.K.B.), the European Research Council (grant ERC-2015-AdG693030-BARRIERS to R.K.B.), the Norwegian Research Council (RCN Project 315287 to A.M.W.), and the Swedish Research Council (grant 2020-05385 to E.L.).
Volume
383
Issue
6678
Page
114-119
eISSN
IST-REx-ID

Cite this

Stankowski S, Zagrodzka ZB, Garlovsky MD, et al. The genetic basis of a recent transition to live-bearing in marine snails. Science. 2024;383(6678):114-119. doi:10.1126/science.adi2982
Stankowski, S., Zagrodzka, Z. B., Garlovsky, M. D., Pal, A., Shipilina, D., Garcia Castillo, D. F., … Butlin, R. K. (2024). The genetic basis of a recent transition to live-bearing in marine snails. Science. American Association for the Advancement of Science. https://doi.org/10.1126/science.adi2982
Stankowski, Sean, Zuzanna B. Zagrodzka, Martin D. Garlovsky, Arka Pal, Daria Shipilina, Diego Fernando Garcia Castillo, Hila Lifchitz, et al. “The Genetic Basis of a Recent Transition to Live-Bearing in Marine Snails.” Science. American Association for the Advancement of Science, 2024. https://doi.org/10.1126/science.adi2982.
S. Stankowski et al., “The genetic basis of a recent transition to live-bearing in marine snails,” Science, vol. 383, no. 6678. American Association for the Advancement of Science, pp. 114–119, 2024.
Stankowski S, Zagrodzka ZB, Garlovsky MD, Pal A, Shipilina D, Garcia Castillo DF, Lifchitz H, Le Moan A, Leder E, Reeve J, Johannesson K, Westram AM, Butlin RK. 2024. The genetic basis of a recent transition to live-bearing in marine snails. Science. 383(6678), 114–119.
Stankowski, Sean, et al. “The Genetic Basis of a Recent Transition to Live-Bearing in Marine Snails.” Science, vol. 383, no. 6678, American Association for the Advancement of Science, 2024, pp. 114–19, doi:10.1126/science.adi2982.

Export

Marked Publications

Open Data ISTA Research Explorer

Sources

PMID: 38175895
PubMed | Europe PMC

Search this title in

Google Scholar