Robust axis elongation by Nodal-dependent restriction of BMP signaling

Schauer A, Pranjic-Ferscha K, Hauschild R, Heisenberg C-PJ. 2024. Robust axis elongation by Nodal-dependent restriction of BMP signaling. Development. 151(4), 1–18.

Download
OA 2024_Development_Schauer.pdf 14.84 MB

Journal Article | Published | English

Scopus indexed
Abstract
Embryogenesis results from the coordinated activities of different signaling pathways controlling cell fate specification and morphogenesis. In vertebrate gastrulation, both Nodal and BMP signaling play key roles in germ layer specification and morphogenesis, yet their interplay to coordinate embryo patterning with morphogenesis is still insufficiently understood. Here, we took a reductionist approach using zebrafish embryonic explants to study the coordination of Nodal and BMP signaling for embryo patterning and morphogenesis. We show that Nodal signaling triggers explant elongation by inducing mesendodermal progenitors but also suppressing BMP signaling activity at the site of mesendoderm induction. Consistent with this, ectopic BMP signaling in the mesendoderm blocks cell alignment and oriented mesendoderm intercalations, key processes during explant elongation. Translating these ex vivo observations to the intact embryo showed that, similar to explants, Nodal signaling suppresses the effect of BMP signaling on cell intercalations in the dorsal domain, thus allowing robust embryonic axis elongation. These findings suggest a dual function of Nodal signaling in embryonic axis elongation by both inducing mesendoderm and suppressing BMP effects in the dorsal portion of the mesendoderm.
Publishing Year
Date Published
2024-02-01
Journal Title
Development
Acknowledgement
We thank Patrick Müller for sharing the chordintt250 mutant zebrafish line as well as the plasmid for chrd-GFP, Katherine Rogers for sharing the bmp2b plasmid and Andrea Pauli for sharing the draculin plasmid. Diana Pinheiro generated the MZlefty1,2;Tg(sebox::EGFP) line. We are grateful to Patrick Müller, Diana Pinheiro and Katherine Rogers and members of the Heisenberg lab for discussions, technical advice and feedback on the manuscript. We also thank Anna Kicheva and Edouard Hannezo for discussions. We thank the Imaging and Optics Facility as well as the Life Science facility at IST Austria for support with microscopy and fish maintenance. This work was supported by a European Research Council Advanced Grant (MECSPEC 742573 to C.-P.H.). A.S. is a recipient of a DOC Fellowship of the Austrian Academy of Sciences at IST Austria. Open Access funding provided by Institute of Science and Technology Austria.
Volume
151
Issue
4
Page
1-18
ISSN
eISSN
IST-REx-ID

Cite this

Schauer A, Pranjic-Ferscha K, Hauschild R, Heisenberg C-PJ. Robust axis elongation by Nodal-dependent restriction of BMP signaling. Development. 2024;151(4):1-18. doi:10.1242/dev.202316
Schauer, A., Pranjic-Ferscha, K., Hauschild, R., & Heisenberg, C.-P. J. (2024). Robust axis elongation by Nodal-dependent restriction of BMP signaling. Development. The Company of Biologists. https://doi.org/10.1242/dev.202316
Schauer, Alexandra, Kornelija Pranjic-Ferscha, Robert Hauschild, and Carl-Philipp J Heisenberg. “Robust Axis Elongation by Nodal-Dependent Restriction of BMP Signaling.” Development. The Company of Biologists, 2024. https://doi.org/10.1242/dev.202316.
A. Schauer, K. Pranjic-Ferscha, R. Hauschild, and C.-P. J. Heisenberg, “Robust axis elongation by Nodal-dependent restriction of BMP signaling,” Development, vol. 151, no. 4. The Company of Biologists, pp. 1–18, 2024.
Schauer A, Pranjic-Ferscha K, Hauschild R, Heisenberg C-PJ. 2024. Robust axis elongation by Nodal-dependent restriction of BMP signaling. Development. 151(4), 1–18.
Schauer, Alexandra, et al. “Robust Axis Elongation by Nodal-Dependent Restriction of BMP Signaling.” Development, vol. 151, no. 4, The Company of Biologists, 2024, pp. 1–18, doi:10.1242/dev.202316.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2024-03-04
MD5 Checksum
6961ea10012bf0d266681f9628bb8f13


Material in ISTA:
Research Data

Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar