Elucidating the role of water in collagen self-assembly by isotopically modulating collagen hydration
Giubertoni G, Feng L, Klein K, Giannetti G, Rutten L, Choi Y, Van Der Net A, Castro-Linares G, Caporaletti F, Micha D, Hunger J, Deblais A, Bonn D, Sommerdijk N, Šarić A, Ilie IM, Koenderink GH, Woutersen S. 2024. Elucidating the role of water in collagen self-assembly by isotopically modulating collagen hydration. Proceedings of the National Academy of Sciences of the United States of America. 121(11), e2313162121.
Download
Journal Article
| Published
| English
Scopus indexed
Author
Giubertoni, Giulia;
Feng, Liru;
Klein, Kevin;
Giannetti, Guido;
Rutten, Luco;
Choi, Yeji;
Van Der Net, Anouk;
Castro-Linares, Gerard;
Caporaletti, Federico;
Micha, Dimitra;
Hunger, Johannes;
Deblais, Antoine
All
All
Department
Abstract
Water is known to play an important role in collagen self-assembly, but it is still largely unclear how water–collagen interactions influence the assembly process and determine the fibril network properties. Here, we use the H2O/D2O isotope effect on the hydrogen-bond strength in water to investigate the role of hydration in collagen self-assembly. We dissolve collagen in H2O and D2O and compare the growth kinetics and the structure of the collagen assemblies formed in these water isotopomers. Surprisingly, collagen assembly occurs ten times faster in D2O than in H2O, and collagen in D2O self-assembles into much thinner fibrils, that form a more inhomogeneous and softer network, with a fourfold reduction in elastic modulus when compared to H2O. Combining spectroscopic measurements with atomistic simulations, we show that collagen in D2O is less hydrated than in H2O. This partial dehydration lowers the enthalpic penalty for water removal and reorganization at the collagen–water interface, increasing the self-assembly rate and the number of nucleation centers, leading to thinner fibrils and a softer network. Coarse-grained simulations show that the acceleration in the initial nucleation rate can be reproduced by the enhancement of electrostatic interactions. These results show that water acts as a mediator between collagen monomers, by modulating their interactions so as to optimize the assembly process and, thus, the final network properties. We believe that isotopically modulating the hydration of proteins can be a valuable method to investigate the role of water in protein structural dynamics and protein self-assembly.
Publishing Year
Date Published
2024-03-12
Journal Title
Proceedings of the National Academy of Sciences of the United States of America
Publisher
Proceedings of the National Academy of Sciences
Acknowledgement
We thank Dr. Steven Roeters (Aarhus University), Dr. Federica Burla, and Prof. Dr. Mischa Bonn (Institute for Polymer Research, Mainz, Germany) for the useful discussions. We thank Dr. Wim Roeterdink and Michiel Hilberts for technical support. G.H.K. acknowledges financial support by the “BaSyC Building a Synthetic Cell” Gravitation grant (024.003.019) of The Netherlands Ministry of Education, Culture and Science (OCW) and The Netherlands Organization for Scientific Research and from NWO grant OCENW.GROOT.2019.022. This work has received support from the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT, under Grant No. 2022K1A3A1A04062969. This publication is part of the project (with Project Number VI.Veni.212.240) of the research programme NWO Talent Programme Veni 2021, which is financed by the Dutch Research Council (NWO). I.M.I. acknowledges support from the Sectorplan Bèta & Techniek of the Dutch Government and the Dementia Research - Synapsis Foundation Switzerland. A.Š. and K.K. acknowledge support from Royal Society and European Research Council Starting Grant. G. Giubertoni kindly thanks to the Care4Bones community and the Collagen Café community for reminding that we do not own the knowledge we create, but it is, rather, a collective resource intended for the advancement of human progress.
Volume
121
Issue
11
Article Number
e2313162121
ISSN
eISSN
IST-REx-ID
Cite this
Giubertoni G, Feng L, Klein K, et al. Elucidating the role of water in collagen self-assembly by isotopically modulating collagen hydration. Proceedings of the National Academy of Sciences of the United States of America. 2024;121(11). doi:10.1073/pnas.2313162121
Giubertoni, G., Feng, L., Klein, K., Giannetti, G., Rutten, L., Choi, Y., … Woutersen, S. (2024). Elucidating the role of water in collagen self-assembly by isotopically modulating collagen hydration. Proceedings of the National Academy of Sciences of the United States of America. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.2313162121
Giubertoni, Giulia, Liru Feng, Kevin Klein, Guido Giannetti, Luco Rutten, Yeji Choi, Anouk Van Der Net, et al. “Elucidating the Role of Water in Collagen Self-Assembly by Isotopically Modulating Collagen Hydration.” Proceedings of the National Academy of Sciences of the United States of America. Proceedings of the National Academy of Sciences, 2024. https://doi.org/10.1073/pnas.2313162121.
G. Giubertoni et al., “Elucidating the role of water in collagen self-assembly by isotopically modulating collagen hydration,” Proceedings of the National Academy of Sciences of the United States of America, vol. 121, no. 11. Proceedings of the National Academy of Sciences, 2024.
Giubertoni G, Feng L, Klein K, Giannetti G, Rutten L, Choi Y, Van Der Net A, Castro-Linares G, Caporaletti F, Micha D, Hunger J, Deblais A, Bonn D, Sommerdijk N, Šarić A, Ilie IM, Koenderink GH, Woutersen S. 2024. Elucidating the role of water in collagen self-assembly by isotopically modulating collagen hydration. Proceedings of the National Academy of Sciences of the United States of America. 121(11), e2313162121.
Giubertoni, Giulia, et al. “Elucidating the Role of Water in Collagen Self-Assembly by Isotopically Modulating Collagen Hydration.” Proceedings of the National Academy of Sciences of the United States of America, vol. 121, no. 11, e2313162121, Proceedings of the National Academy of Sciences, 2024, doi:10.1073/pnas.2313162121.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
2024_PNAS_Giubertoni.pdf
12.95 MB
Access Level
Open Access
Date Uploaded
2024-03-19
MD5 Checksum
a3f7fdc29dd9f0a38952ab4e322b3a05
Export
Marked PublicationsOpen Data ISTA Research Explorer
Sources
PMID: 38451946
PubMed | Europe PMC