Structural dynamics of RbmA governs plasticity of Vibrio cholerae biofilms
Fong JC, Rogers A, Michael AK, Parsley NC, Cornell W-C, Lin Y-C, Singh PK, Hartmann R, Drescher K, Vinogradov E, Dietrich LE, Partch CL, Yildiz FH. 2017. Structural dynamics of RbmA governs plasticity of Vibrio cholerae biofilms. eLife. 6, 26163.
Download (ext.)
https://doi.org/10.7554/eLife.26163
[Published Version]
Journal Article
| Published
| English
Scopus indexed
Author
Fong, Jiunn CN;
Rogers, Andrew;
Michael, Alicia K.ISTA;
Parsley, Nicole C;
Cornell, William-Cole;
Lin, Yu-Cheng;
Singh, Praveen K;
Hartmann, Raimo;
Drescher, Knut;
Vinogradov, Evgeny;
Dietrich, Lars EP;
Partch, Carrie L
All
All
Abstract
Biofilm formation is critical for the infection cycle of Vibrio cholerae. Vibrio exopolysaccharides (VPS) and the matrix proteins RbmA, Bap1 and RbmC are required for the development of biofilm architecture. We demonstrate that RbmA binds VPS directly and uses a binary structural switch within its first fibronectin type III (FnIII-1) domain to control RbmA structural dynamics and the formation of VPS-dependent higher-order structures. The structural switch in FnIII-1 regulates interactions in trans with the FnIII-2 domain, leading to open (monomeric) or closed (dimeric) interfaces. The ability of RbmA to switch between open and closed states is important for V. cholerae biofilm formation, as RbmA variants with switches that are locked in either of the two states lead to biofilms with altered architecture and structural integrity.
Keywords
Publishing Year
Date Published
2017-08-01
Journal Title
eLife
Volume
6
Article Number
26163
ISSN
IST-REx-ID
Cite this
Fong JC, Rogers A, Michael AK, et al. Structural dynamics of RbmA governs plasticity of Vibrio cholerae biofilms. eLife. 2017;6. doi:10.7554/elife.26163
Fong, J. C., Rogers, A., Michael, A. K., Parsley, N. C., Cornell, W.-C., Lin, Y.-C., … Yildiz, F. H. (2017). Structural dynamics of RbmA governs plasticity of Vibrio cholerae biofilms. ELife. eLife Sciences Publications. https://doi.org/10.7554/elife.26163
Fong, Jiunn CN, Andrew Rogers, Alicia K. Michael, Nicole C Parsley, William-Cole Cornell, Yu-Cheng Lin, Praveen K Singh, et al. “Structural Dynamics of RbmA Governs Plasticity of Vibrio Cholerae Biofilms.” ELife. eLife Sciences Publications, 2017. https://doi.org/10.7554/elife.26163.
J. C. Fong et al., “Structural dynamics of RbmA governs plasticity of Vibrio cholerae biofilms,” eLife, vol. 6. eLife Sciences Publications, 2017.
Fong JC, Rogers A, Michael AK, Parsley NC, Cornell W-C, Lin Y-C, Singh PK, Hartmann R, Drescher K, Vinogradov E, Dietrich LE, Partch CL, Yildiz FH. 2017. Structural dynamics of RbmA governs plasticity of Vibrio cholerae biofilms. eLife. 6, 26163.
Fong, Jiunn CN, et al. “Structural Dynamics of RbmA Governs Plasticity of Vibrio Cholerae Biofilms.” ELife, vol. 6, 26163, eLife Sciences Publications, 2017, doi:10.7554/elife.26163.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Open Access
Export
Marked PublicationsOpen Data ISTA Research Explorer
Sources
PMID: 28762945
PubMed | Europe PMC