CSP for binary conservative relational structures
Kazda A. 2016. CSP for binary conservative relational structures. Algebra Universalis. 75(1), 75–84.
Download (ext.)
http://arxiv.org/abs/1112.1099
[Preprint]
Journal Article
| Published
| English
Scopus indexed
Author
Corresponding author has ISTA affiliation
Department
Abstract
We prove that whenever A is a 3-conservative relational structure with only binary and unary relations,then the algebra of polymorphisms of A either has no Taylor operation (i.e.,CSP(A)is NP-complete),or it generates an SD(∧) variety (i.e.,CSP(A)has bounded width).
Publishing Year
Date Published
2016-02-01
Journal Title
Algebra Universalis
Publisher
Springer
Volume
75
Issue
1
Page
75 - 84
IST-REx-ID
Cite this
Kazda A. CSP for binary conservative relational structures. Algebra Universalis. 2016;75(1):75-84. doi:10.1007/s00012-015-0358-8
Kazda, A. (2016). CSP for binary conservative relational structures. Algebra Universalis. Springer. https://doi.org/10.1007/s00012-015-0358-8
Kazda, Alexandr. “CSP for Binary Conservative Relational Structures.” Algebra Universalis. Springer, 2016. https://doi.org/10.1007/s00012-015-0358-8.
A. Kazda, “CSP for binary conservative relational structures,” Algebra Universalis, vol. 75, no. 1. Springer, pp. 75–84, 2016.
Kazda A. 2016. CSP for binary conservative relational structures. Algebra Universalis. 75(1), 75–84.
Kazda, Alexandr. “CSP for Binary Conservative Relational Structures.” Algebra Universalis, vol. 75, no. 1, Springer, 2016, pp. 75–84, doi:10.1007/s00012-015-0358-8.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Open Access