On modulo ℓ cohomology of p-adic Deligne–Lusztig varieties for GLn
Löwit J. 2025. On modulo ℓ cohomology of p-adic Deligne–Lusztig varieties for GLn. Journal of Algebra. 663(2), 81–118.
Download
Journal Article
| Published
| English
Scopus indexed
Author
Corresponding author has ISTA affiliation
Department
Abstract
In 1976, Deligne and Lusztig realized the representation theory of finite groups of Lie type inside étale cohomology of certain algebraic varieties. Recently, a p-adic version of this theory started to emerge: there are p-adic Deligne–Lusztig spaces, whose cohomology encodes representation theoretic information for p-adic groups – for instance, it partially realizes the local Langlands correspondence with characteristic zero coefficients. However, the parallel case of coefficients of positive characteristic ℓ≠p has not been inspected so far. The purpose of this article is to initiate such an inspection. In particular, we relate cohomology of certain p-adic Deligne–Lusztig spaces to Vignéras's modular local Langlands correspondence for GLn.
Publishing Year
Date Published
2025-02-01
Journal Title
Journal of Algebra
Publisher
Elsevier
Volume
663
Issue
2
Page
81-118
ISSN
eISSN
IST-REx-ID
Cite this
Löwit J. On modulo ℓ cohomology of p-adic Deligne–Lusztig varieties for GLn. Journal of Algebra. 2025;663(2):81-118. doi:10.1016/j.jalgebra.2024.08.033
Löwit, J. (2025). On modulo ℓ cohomology of p-adic Deligne–Lusztig varieties for GLn. Journal of Algebra. Elsevier. https://doi.org/10.1016/j.jalgebra.2024.08.033
Löwit, Jakub. “On modulo ℓ Cohomology of P-Adic Deligne–Lusztig Varieties for GLn.” Journal of Algebra. Elsevier, 2025. https://doi.org/10.1016/j.jalgebra.2024.08.033.
J. Löwit, “On modulo ℓ cohomology of p-adic Deligne–Lusztig varieties for GLn,” Journal of Algebra, vol. 663, no. 2. Elsevier, pp. 81–118, 2025.
Löwit J. 2025. On modulo ℓ cohomology of p-adic Deligne–Lusztig varieties for GLn. Journal of Algebra. 663(2), 81–118.
Löwit, Jakub. “On modulo ℓ Cohomology of P-Adic Deligne–Lusztig Varieties for GLn.” Journal of Algebra, vol. 663, no. 2, Elsevier, 2025, pp. 81–118, doi:10.1016/j.jalgebra.2024.08.033.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
2024_JourAlgebra_Loewit.pdf
731.17 KB
Access Level

Date Uploaded
2025-01-13
MD5 Checksum
eb240e93c178e48429ad918c9058f1fe
Export
Marked PublicationsOpen Data ISTA Research Explorer
Web of Science
View record in Web of Science®Sources
arXiv 2404.11176