On modulo ℓ cohomology of p-adic Deligne–Lusztig varieties for GLn
Löwit J. 2024. On modulo ℓ cohomology of p-adic Deligne–Lusztig varieties for GLn. Journal of Algebra. 663, 81–118.
Download (ext.)
https://doi.org/10.1016/j.jalgebra.2024.08.033
[Published Version]
Journal Article
| Epub ahead of print
| English
Scopus indexed
Author
Department
Abstract
In 1976, Deligne and Lusztig realized the representation theory of finite groups of Lie type inside étale cohomology of certain algebraic varieties. Recently, a p-adic version of this theory started to emerge: there are p-adic Deligne–Lusztig spaces, whose cohomology encodes representation theoretic information for p-adic groups – for instance, it partially realizes the local Langlands correspondence with characteristic zero coefficients. However, the parallel case of coefficients of positive characteristic ℓ≠p has not been inspected so far. The purpose of this article is to initiate such an inspection. In particular, we relate cohomology of certain p-adic Deligne–Lusztig spaces to Vignéras's modular local Langlands correspondence for GLn.
Publishing Year
Date Published
2024-09-25
Journal Title
Journal of Algebra
Volume
663
Page
81-118
ISSN
eISSN
IST-REx-ID
Cite this
Löwit J. On modulo ℓ cohomology of p-adic Deligne–Lusztig varieties for GLn. Journal of Algebra. 2024;663:81-118. doi:10.1016/j.jalgebra.2024.08.033
Löwit, J. (2024). On modulo ℓ cohomology of p-adic Deligne–Lusztig varieties for GLn. Journal of Algebra. Elsevier. https://doi.org/10.1016/j.jalgebra.2024.08.033
Löwit, Jakub. “On modulo ℓ Cohomology of P-Adic Deligne–Lusztig Varieties for GLn.” Journal of Algebra. Elsevier, 2024. https://doi.org/10.1016/j.jalgebra.2024.08.033.
J. Löwit, “On modulo ℓ cohomology of p-adic Deligne–Lusztig varieties for GLn,” Journal of Algebra, vol. 663. Elsevier, pp. 81–118, 2024.
Löwit J. 2024. On modulo ℓ cohomology of p-adic Deligne–Lusztig varieties for GLn. Journal of Algebra. 663, 81–118.
Löwit, Jakub. “On modulo ℓ Cohomology of P-Adic Deligne–Lusztig Varieties for GLn.” Journal of Algebra, vol. 663, Elsevier, 2024, pp. 81–118, doi:10.1016/j.jalgebra.2024.08.033.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Open Access
Export
Marked PublicationsOpen Data ISTA Research Explorer
Sources
arXiv 2404.11176