Affine-invariant diffusion geometry for the analysis of deformable 3D shapes
Raviv D, Bronstein MM, Bronstein AM, Kimmel R, Sochen N. 2011. Affine-invariant diffusion geometry for the analysis of deformable 3D shapes. CVPR 2011. IEEE Computer Vision and Pattern Recognition (CVPR) 2011, 5995486.
Download (ext.)
https://doi.org/10.48550/arXiv.1012.5933
[Preprint]
Conference Paper
| Published
| English
Author
Raviv, Dan;
Bronstein, Michael M.;
Bronstein, Alex M.ISTA ;
Kimmel, Ron;
Sochen, Nir
Abstract
We introduce an (equi-)affine invariant diffusion geometry by which surfaces that go through squeeze and shear transformations can still be properly analyzed. The definition of an affine invariant metric enables us to construct an invariant Laplacian from which local and global geometric structures are extracted. Applications of the proposed framework demonstrate its power in generalizing and enriching the existing set of tools for shape analysis.
Publishing Year
Date Published
2011-08-22
Proceedings Title
CVPR 2011
Publisher
IEEE
Article Number
5995486
Conference
IEEE Computer Vision and Pattern Recognition (CVPR) 2011
Conference Location
Colorado Springs, CO, United States
Conference Date
2011-06-20 – 2011-06-25
ISBN
eISSN
IST-REx-ID
Cite this
Raviv D, Bronstein MM, Bronstein AM, Kimmel R, Sochen N. Affine-invariant diffusion geometry for the analysis of deformable 3D shapes. In: CVPR 2011. IEEE; 2011. doi:10.1109/cvpr.2011.5995486
Raviv, D., Bronstein, M. M., Bronstein, A. M., Kimmel, R., & Sochen, N. (2011). Affine-invariant diffusion geometry for the analysis of deformable 3D shapes. In CVPR 2011. Colorado Springs, CO, United States: IEEE. https://doi.org/10.1109/cvpr.2011.5995486
Raviv, Dan, Michael M. Bronstein, Alex M. Bronstein, Ron Kimmel, and Nir Sochen. “Affine-Invariant Diffusion Geometry for the Analysis of Deformable 3D Shapes.” In CVPR 2011. IEEE, 2011. https://doi.org/10.1109/cvpr.2011.5995486.
D. Raviv, M. M. Bronstein, A. M. Bronstein, R. Kimmel, and N. Sochen, “Affine-invariant diffusion geometry for the analysis of deformable 3D shapes,” in CVPR 2011, Colorado Springs, CO, United States, 2011.
Raviv D, Bronstein MM, Bronstein AM, Kimmel R, Sochen N. 2011. Affine-invariant diffusion geometry for the analysis of deformable 3D shapes. CVPR 2011. IEEE Computer Vision and Pattern Recognition (CVPR) 2011, 5995486.
Raviv, Dan, et al. “Affine-Invariant Diffusion Geometry for the Analysis of Deformable 3D Shapes.” CVPR 2011, 5995486, IEEE, 2011, doi:10.1109/cvpr.2011.5995486.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Link(s) to Main File(s)
Access Level
Open Access
Export
Marked PublicationsOpen Data ISTA Research Explorer
Sources
arXiv 1012.5933