Earlier Version
The multi-cover persistence of Euclidean balls
Edelsbrunner H, Osang GF. 2018. The multi-cover persistence of Euclidean balls. SoCG: Symposium on Computational Geometry, LIPIcs, vol. 99, 34.
Download
Conference Paper
| Published
| English
Scopus indexed
Department
Series Title
LIPIcs
Abstract
Given a locally finite X ⊆ ℝd and a radius r ≥ 0, the k-fold cover of X and r consists of all points in ℝd that have k or more points of X within distance r. We consider two filtrations - one in scale obtained by fixing k and increasing r, and the other in depth obtained by fixing r and decreasing k - and we compute the persistence diagrams of both. While standard methods suffice for the filtration in scale, we need novel geometric and topological concepts for the filtration in depth. In particular, we introduce a rhomboid tiling in ℝd+1 whose horizontal integer slices are the order-k Delaunay mosaics of X, and construct a zigzag module from Delaunay mosaics that is isomorphic to the persistence module of the multi-covers.
Publishing Year
Date Published
2018-06-11
Publisher
Schloss Dagstuhl - Leibniz-Zentrum für Informatik
Acknowledgement
This work is partially supported by the DFG Collaborative Research Center TRR 109, ‘Discretization in Geometry and Dynamics’, through grant no. I02979-N35 of the Austrian Science Fund (FWF).
Volume
99
Article Number
34
Conference
SoCG: Symposium on Computational Geometry
Conference Location
Budapest, Hungary
Conference Date
2018-06-11 – 2018-06-14
IST-REx-ID
Cite this
Edelsbrunner H, Osang GF. The multi-cover persistence of Euclidean balls. In: Vol 99. Schloss Dagstuhl - Leibniz-Zentrum für Informatik; 2018. doi:10.4230/LIPIcs.SoCG.2018.34
Edelsbrunner, H., & Osang, G. F. (2018). The multi-cover persistence of Euclidean balls (Vol. 99). Presented at the SoCG: Symposium on Computational Geometry, Budapest, Hungary: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.SoCG.2018.34
Edelsbrunner, Herbert, and Georg F Osang. “The Multi-Cover Persistence of Euclidean Balls,” Vol. 99. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. https://doi.org/10.4230/LIPIcs.SoCG.2018.34.
H. Edelsbrunner and G. F. Osang, “The multi-cover persistence of Euclidean balls,” presented at the SoCG: Symposium on Computational Geometry, Budapest, Hungary, 2018, vol. 99.
Edelsbrunner H, Osang GF. 2018. The multi-cover persistence of Euclidean balls. SoCG: Symposium on Computational Geometry, LIPIcs, vol. 99, 34.
Edelsbrunner, Herbert, and Georg F. Osang. The Multi-Cover Persistence of Euclidean Balls. Vol. 99, 34, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018, doi:10.4230/LIPIcs.SoCG.2018.34.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
2018_LIPIcs_Edelsbrunner_Osang.pdf
528.02 KB
Access Level
Open Access
Date Uploaded
2018-12-18
MD5 Checksum
d8c0533ad0018eb4ed1077475eb8fc18
Material in ISTA:
Dissertation containing ISTA record
Later Version