Model of bacterial toxin-dependent pathogenesis explains infective dose

Rybicki J, Kisdi E, Anttila J. 2018. Model of bacterial toxin-dependent pathogenesis explains infective dose. PNAS. 115(42), 10690–10695.

Download
OA 2018_PNAS_Rybicki.pdf 4.07 MB [Submitted Version]

Journal Article | Published | English

Scopus indexed
Author
Rybicki, JoelISTA ; Kisdi, Eva; Anttila, Jani
Department
Abstract
The initial amount of pathogens required to start an infection within a susceptible host is called the infective dose and is known to vary to a large extent between different pathogen species. We investigate the hypothesis that the differences in infective doses are explained by the mode of action in the underlying mechanism of pathogenesis: Pathogens with locally acting mechanisms tend to have smaller infective doses than pathogens with distantly acting mechanisms. While empirical evidence tends to support the hypothesis, a formal theoretical explanation has been lacking. We give simple analytical models to gain insight into this phenomenon and also investigate a stochastic, spatially explicit, mechanistic within-host model for toxin-dependent bacterial infections. The model shows that pathogens secreting locally acting toxins have smaller infective doses than pathogens secreting diffusive toxins, as hypothesized. While local pathogenetic mechanisms require smaller infective doses, pathogens with distantly acting toxins tend to spread faster and may cause more damage to the host. The proposed model can serve as a basis for the spatially explicit analysis of various virulence factors also in the context of other problems in infection dynamics.
Publishing Year
Date Published
2018-10-02
Journal Title
PNAS
Acknowledgement
J.R. and J.V.A. were also supported by the Academy of Finland Grants 1273253 and 267541.
Volume
115
Issue
42
Page
10690 - 10695
IST-REx-ID
43

Cite this

Rybicki J, Kisdi E, Anttila J. Model of bacterial toxin-dependent pathogenesis explains infective dose. PNAS. 2018;115(42):10690-10695. doi:10.1073/pnas.1721061115
Rybicki, J., Kisdi, E., & Anttila, J. (2018). Model of bacterial toxin-dependent pathogenesis explains infective dose. PNAS. National Academy of Sciences. https://doi.org/10.1073/pnas.1721061115
Rybicki, Joel, Eva Kisdi, and Jani Anttila. “Model of Bacterial Toxin-Dependent Pathogenesis Explains Infective Dose.” PNAS. National Academy of Sciences, 2018. https://doi.org/10.1073/pnas.1721061115.
J. Rybicki, E. Kisdi, and J. Anttila, “Model of bacterial toxin-dependent pathogenesis explains infective dose,” PNAS, vol. 115, no. 42. National Academy of Sciences, pp. 10690–10695, 2018.
Rybicki J, Kisdi E, Anttila J. 2018. Model of bacterial toxin-dependent pathogenesis explains infective dose. PNAS. 115(42), 10690–10695.
Rybicki, Joel, et al. “Model of Bacterial Toxin-Dependent Pathogenesis Explains Infective Dose.” PNAS, vol. 115, no. 42, National Academy of Sciences, 2018, pp. 10690–95, doi:10.1073/pnas.1721061115.
All files available under the following license(s):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Main File(s)
File Name
Access Level
OA Open Access
Date Uploaded
2019-04-09
MD5 Checksum
df7ac544a587c06b75692653b9fabd18


Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Search this title in

Google Scholar