Theory of mechanochemical patterning in biphasic biological tissues

Recho P, Hallou A, Hannezo EB. 2019. Theory of mechanochemical patterning in biphasic biological tissues. Proceedings of the National Academy of Sciences of the United States of America. 116(12), 5344–5349.

Download
OA 2019_PNAS_Recho.pdf 3.46 MB [Published Version]

Journal Article | Published | English

Scopus indexed
Author
Recho, Pierre; Hallou, Adrien; Hannezo, Edouard ISTA
Department
Abstract
The formation of self-organized patterns is key to the morphogenesis of multicellular organisms, although a comprehensive theory of biological pattern formation is still lacking. Here, we propose a minimal model combining tissue mechanics with morphogen turnover and transport to explore routes to patterning. Our active description couples morphogen reaction and diffusion, which impact cell differentiation and tissue mechanics, to a two-phase poroelastic rheology, where one tissue phase consists of a poroelastic cell network and the other one of a permeating extracellular fluid, which provides a feedback by actively transporting morphogens. While this model encompasses previous theories approximating tissues to inert monophasic media, such as Turing’s reaction–diffusion model, it overcomes some of their key limitations permitting pattern formation via any two-species biochemical kinetics due to mechanically induced cross-diffusion flows. Moreover, we describe a qualitatively different advection-driven Keller–Segel instability which allows for the formation of patterns with a single morphogen and whose fundamental mode pattern robustly scales with tissue size. We discuss the potential relevance of these findings for tissue morphogenesis.
Publishing Year
Date Published
2019-03-19
Journal Title
Proceedings of the National Academy of Sciences of the United States of America
Volume
116
Issue
12
Page
5344-5349
ISSN
eISSN
IST-REx-ID

Cite this

Recho P, Hallou A, Hannezo EB. Theory of mechanochemical patterning in biphasic biological tissues. Proceedings of the National Academy of Sciences of the United States of America. 2019;116(12):5344-5349. doi:10.1073/pnas.1813255116
Recho, P., Hallou, A., & Hannezo, E. B. (2019). Theory of mechanochemical patterning in biphasic biological tissues. Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences. https://doi.org/10.1073/pnas.1813255116
Recho, Pierre, Adrien Hallou, and Edouard B Hannezo. “Theory of Mechanochemical Patterning in Biphasic Biological Tissues.” Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences, 2019. https://doi.org/10.1073/pnas.1813255116.
P. Recho, A. Hallou, and E. B. Hannezo, “Theory of mechanochemical patterning in biphasic biological tissues,” Proceedings of the National Academy of Sciences of the United States of America, vol. 116, no. 12. National Academy of Sciences, pp. 5344–5349, 2019.
Recho P, Hallou A, Hannezo EB. 2019. Theory of mechanochemical patterning in biphasic biological tissues. Proceedings of the National Academy of Sciences of the United States of America. 116(12), 5344–5349.
Recho, Pierre, et al. “Theory of Mechanochemical Patterning in Biphasic Biological Tissues.” Proceedings of the National Academy of Sciences of the United States of America, vol. 116, no. 12, National Academy of Sciences, 2019, pp. 5344–49, doi:10.1073/pnas.1813255116.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
Access Level
OA Open Access
Date Uploaded
2019-04-03
MD5 Checksum
8b67eee0ea8e5db61583e4d485215258


External material:
Supplementary Material

Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Sources

PMID: 30819884
PubMed | Europe PMC

Search this title in

Google Scholar