Mechanisms of radial glia progenitor cell lineage progression
Beattie RJ, Hippenmeyer S. 2017. Mechanisms of radial glia progenitor cell lineage progression. FEBS letters. 591(24), 3993–4008.
Download
Journal Article
| Published
| English
Scopus indexed
Corresponding author has ISTA affiliation
Department
Grant
Abstract
The mammalian cerebral cortex is responsible for higher cognitive functions such as perception, consciousness, and acquiring and processing information. The neocortex is organized into six distinct laminae, each composed of a rich diversity of cell types which assemble into highly complex cortical circuits. Radial glia progenitors (RGPs) are responsible for producing all neocortical neurons and certain glia lineages. Here, we discuss recent discoveries emerging from clonal lineage analysis at the single RGP cell level that provide us with an inaugural quantitative framework of RGP lineage progression. We further discuss the importance of the relative contribution of intrinsic gene functions and non-cell-autonomous or community effects in regulating RGP proliferation behavior and lineage progression.
Publishing Year
Date Published
2017-12-01
Journal Title
FEBS letters
Publisher
Wiley-Blackwell
Volume
591
Issue
24
Page
3993 - 4008
ISSN
IST-REx-ID
Cite this
Beattie RJ, Hippenmeyer S. Mechanisms of radial glia progenitor cell lineage progression. FEBS letters. 2017;591(24):3993-4008. doi:10.1002/1873-3468.12906
Beattie, R. J., & Hippenmeyer, S. (2017). Mechanisms of radial glia progenitor cell lineage progression. FEBS Letters. Wiley-Blackwell. https://doi.org/10.1002/1873-3468.12906
Beattie, Robert J, and Simon Hippenmeyer. “Mechanisms of Radial Glia Progenitor Cell Lineage Progression.” FEBS Letters. Wiley-Blackwell, 2017. https://doi.org/10.1002/1873-3468.12906.
R. J. Beattie and S. Hippenmeyer, “Mechanisms of radial glia progenitor cell lineage progression,” FEBS letters, vol. 591, no. 24. Wiley-Blackwell, pp. 3993–4008, 2017.
Beattie RJ, Hippenmeyer S. 2017. Mechanisms of radial glia progenitor cell lineage progression. FEBS letters. 591(24), 3993–4008.
Beattie, Robert J., and Simon Hippenmeyer. “Mechanisms of Radial Glia Progenitor Cell Lineage Progression.” FEBS Letters, vol. 591, no. 24, Wiley-Blackwell, 2017, pp. 3993–4008, doi:10.1002/1873-3468.12906.
All files available under the following license(s):
Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0):
Main File(s)
File Name
Access Level
Open Access
Date Uploaded
2018-12-12
MD5 Checksum
a46dadc84e0c28d389dd3e9e954464db
Export
Marked PublicationsOpen Data ISTA Research Explorer
Sources
PMID: 29121403
PubMed | Europe PMC