Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction

Sigalova OM, Chaplin AV, Bochkareva O, Shelyakin PV, Filaretov VA, Akkuratov EE, Burskaia V, Gelfand MS. 2019. Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction. BMC Genomics. 20(1), 710.

Download
OA 2019_BioMed_Sigalova.pdf 4.16 MB [Published Version]

Journal Article | Published | English

Scopus indexed
Author
Sigalova, Olga M.; Chaplin, Andrei V.; Bochkareva, OlgaISTA ; Shelyakin, Pavel V.; Filaretov, Vsevolod A.; Akkuratov, Evgeny E.; Burskaia, Valentina; Gelfand, Mikhail S.
Department
Abstract
Background Chlamydia are ancient intracellular pathogens with reduced, though strikingly conserved genome. Despite their parasitic lifestyle and isolated intracellular environment, these bacteria managed to avoid accumulation of deleterious mutations leading to subsequent genome degradation characteristic for many parasitic bacteria. Results We report pan-genomic analysis of sixteen species from genus Chlamydia including identification and functional annotation of orthologous genes, and characterization of gene gains, losses, and rearrangements. We demonstrate the overall genome stability of these bacteria as indicated by a large fraction of common genes with conserved genomic locations. On the other hand, extreme evolvability is confined to several paralogous gene families such as polymorphic membrane proteins and phospholipase D, and likely is caused by the pressure from the host immune system. Conclusions This combination of a large, conserved core genome and a small, evolvable periphery likely reflect the balance between the selective pressure towards genome reduction and the need to adapt to escape from the host immunity.
Publishing Year
Date Published
2019-09-12
Journal Title
BMC Genomics
Publisher
BioMed Central
Volume
20
Issue
1
Article Number
710
eISSN
IST-REx-ID

Cite this

Sigalova OM, Chaplin AV, Bochkareva O, et al. Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction. BMC Genomics. 2019;20(1). doi:10.1186/s12864-019-6059-5
Sigalova, O. M., Chaplin, A. V., Bochkareva, O., Shelyakin, P. V., Filaretov, V. A., Akkuratov, E. E., … Gelfand, M. S. (2019). Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction. BMC Genomics. BioMed Central. https://doi.org/10.1186/s12864-019-6059-5
Sigalova, Olga M., Andrei V. Chaplin, Olga Bochkareva, Pavel V. Shelyakin, Vsevolod A. Filaretov, Evgeny E. Akkuratov, Valentina Burskaia, and Mikhail S. Gelfand. “Chlamydia Pan-Genomic Analysis Reveals Balance between Host Adaptation and Selective Pressure to Genome Reduction.” BMC Genomics. BioMed Central, 2019. https://doi.org/10.1186/s12864-019-6059-5.
O. M. Sigalova et al., “Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction,” BMC Genomics, vol. 20, no. 1. BioMed Central, 2019.
Sigalova OM, Chaplin AV, Bochkareva O, Shelyakin PV, Filaretov VA, Akkuratov EE, Burskaia V, Gelfand MS. 2019. Chlamydia pan-genomic analysis reveals balance between host adaptation and selective pressure to genome reduction. BMC Genomics. 20(1), 710.
Sigalova, Olga M., et al. “Chlamydia Pan-Genomic Analysis Reveals Balance between Host Adaptation and Selective Pressure to Genome Reduction.” BMC Genomics, vol. 20, no. 1, 710, BioMed Central, 2019, doi:10.1186/s12864-019-6059-5.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
File Name
Access Level
OA Open Access
Date Uploaded
2019-10-01
MD5 Checksum
b798773c5823012d31c812c9f7975da2


Material in ISTA:
Research Data
Research Data
Research Data
Research Data
Research Data
Research Data
Research Data
Research Data
Research Data
Research Data
Research Data
Research Data
Research Data

Export

Marked Publications

Open Data ISTA Research Explorer

Web of Science

View record in Web of Science®

Search this title in

Google Scholar