Stress induced mutagenesis: Stress diversity facilitates the persistence of mutator genes

Lukacisinova M, Novak S, Paixao T. 2017. Stress induced mutagenesis: Stress diversity facilitates the persistence of mutator genes. PLoS Computational Biology. 13(7), e1005609.

Download
OA IST-2017-894-v1+1_journal.pcbi.1005609.pdf 3.78 MB [Published Version]

Journal Article | Published | English

Scopus indexed
Abstract
Mutator strains are expected to evolve when the availability and effect of beneficial mutations are high enough to counteract the disadvantage from deleterious mutations that will inevitably accumulate. As the population becomes more adapted to its environment, both availability and effect of beneficial mutations necessarily decrease and mutation rates are predicted to decrease. It has been shown that certain molecular mechanisms can lead to increased mutation rates when the organism finds itself in a stressful environment. While this may be a correlated response to other functions, it could also be an adaptive mechanism, raising mutation rates only when it is most advantageous. Here, we use a mathematical model to investigate the plausibility of the adaptive hypothesis. We show that such a mechanism can be mantained if the population is subjected to diverse stresses. By simulating various antibiotic treatment schemes, we find that combination treatments can reduce the effectiveness of second-order selection on stress-induced mutagenesis. We discuss the implications of our results to strategies of antibiotic therapy.
Publishing Year
Date Published
2017-07-18
Journal Title
PLoS Computational Biology
Volume
13
Issue
7
Article Number
e1005609
ISSN
IST-REx-ID
696

Cite this

Lukacisinova M, Novak S, Paixao T. Stress induced mutagenesis: Stress diversity facilitates the persistence of mutator genes. PLoS Computational Biology. 2017;13(7). doi:10.1371/journal.pcbi.1005609
Lukacisinova, M., Novak, S., & Paixao, T. (2017). Stress induced mutagenesis: Stress diversity facilitates the persistence of mutator genes. PLoS Computational Biology. Public Library of Science. https://doi.org/10.1371/journal.pcbi.1005609
Lukacisinova, Marta, Sebastian Novak, and Tiago Paixao. “Stress Induced Mutagenesis: Stress Diversity Facilitates the Persistence of Mutator Genes.” PLoS Computational Biology. Public Library of Science, 2017. https://doi.org/10.1371/journal.pcbi.1005609.
M. Lukacisinova, S. Novak, and T. Paixao, “Stress induced mutagenesis: Stress diversity facilitates the persistence of mutator genes,” PLoS Computational Biology, vol. 13, no. 7. Public Library of Science, 2017.
Lukacisinova M, Novak S, Paixao T. 2017. Stress induced mutagenesis: Stress diversity facilitates the persistence of mutator genes. PLoS Computational Biology. 13(7), e1005609.
Lukacisinova, Marta, et al. “Stress Induced Mutagenesis: Stress Diversity Facilitates the Persistence of Mutator Genes.” PLoS Computational Biology, vol. 13, no. 7, e1005609, Public Library of Science, 2017, doi:10.1371/journal.pcbi.1005609.
All files available under the following license(s):
Creative Commons Attribution 4.0 International Public License (CC-BY 4.0):
Main File(s)
Access Level
OA Open Access
Date Uploaded
2018-12-12
MD5 Checksum
9143c290fa6458ed2563bff4b295554a


Export

Marked Publications

Open Data ISTA Research Explorer

Search this title in

Google Scholar