Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).
We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.
154 Publications
2024 | Draft | Preprint | IST-REx-ID: 19545 |

Cipolloni, Giorgio, Eigenstate thermalisation at the edge for Wigner matrices. arXiv. 2024
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv
2024 | Draft | Preprint | IST-REx-ID: 19547 |

Erdös, László, Cusp universality for correlated random matrices. arXiv. 2024
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv
2024 | Draft | Preprint | IST-REx-ID: 19551 |

Henheik, Sven Joscha, Response theory for locally gapped systems. arXiv. 2024
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv
2024 | Published | Journal Article | IST-REx-ID: 14542 |

Henheik, S. J., Lauritsen, A. B., & Roos, B. (2024). Universality in low-dimensional BCS theory. Reviews in Mathematical Physics. World Scientific Publishing. https://doi.org/10.1142/s0129055x2360005x
[Published Version]
View
| Files available
| DOI
| arXiv
2024 | Published | Thesis | IST-REx-ID: 17164 |

Reker, J. (2024). Central limit theorems for random matrices: From resolvents to free probability. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:17164
[Published Version]
View
| Files available
| DOI
2024 | Published | Journal Article | IST-REx-ID: 17049 |

Cipolloni, G., Erdös, L., Henheik, S. J., & Schröder, D. J. (2024). Optimal lower bound on eigenvector overlaps for non-Hermitian random matrices. Journal of Functional Analysis. Elsevier. https://doi.org/10.1016/j.jfa.2024.110495
[Published Version]
View
| Files available
| DOI
2023 | Published | Journal Article | IST-REx-ID: 11741 |

Cipolloni, G., Erdös, L., & Schröder, D. J. (2023). Quenched universality for deformed Wigner matrices. Probability Theory and Related Fields. Springer Nature. https://doi.org/10.1007/s00440-022-01156-7
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2023 | Published | Journal Article | IST-REx-ID: 17079 |

Serebryakov, A., Simm, N., & Dubach, G. (2023). Characteristic polynomials of random truncations: Moments, duality and asymptotics. Random Matrices: Theory and Applications. World Scientific Publishing. https://doi.org/10.1142/s2010326322500496
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2023 | Published | Journal Article | IST-REx-ID: 12761 |

Cipolloni, G., Erdös, L., & Schröder, D. J. (2023). Functional central limit theorems for Wigner matrices. Annals of Applied Probability. Institute of Mathematical Statistics. https://doi.org/10.1214/22-AAP1820
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2023 | Published | Journal Article | IST-REx-ID: 12707 |

Erdös, L., & Xu, Y. (2023). Small deviation estimates for the largest eigenvalue of Wigner matrices. Bernoulli. Bernoulli Society for Mathematical Statistics and Probability. https://doi.org/10.3150/22-BEJ1490
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2023 | Published | Journal Article | IST-REx-ID: 12792 |

Cipolloni, G., Erdös, L., & Schröder, D. J. (2023). On the spectral form factor for random matrices. Communications in Mathematical Physics. Springer Nature. https://doi.org/10.1007/s00220-023-04692-y
[Published Version]
View
| Files available
| DOI
| WoS
2023 | Published | Journal Article | IST-REx-ID: 14780 |

Ding, X., & Ji, H. C. (2023). Spiked multiplicative random matrices and principal components. Stochastic Processes and Their Applications. Elsevier. https://doi.org/10.1016/j.spa.2023.05.009
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2023 | Published | Journal Article | IST-REx-ID: 14667 |

Erdös, L., & Ji, H. C. (2023). Functional CLT for non-Hermitian random matrices. Annales de l’institut Henri Poincare (B) Probability and Statistics. Institute of Mathematical Statistics. https://doi.org/10.1214/22-AIHP1304
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2023 | Published | Journal Article | IST-REx-ID: 14750 |

Ding, X., & Ji, H. C. (2023). Local laws for multiplication of random matrices. The Annals of Applied Probability. Institute of Mathematical Statistics. https://doi.org/10.1214/22-aap1882
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2023 | Published | Journal Article | IST-REx-ID: 14775 |

Schnelli, K., & Xu, Y. (2023). Convergence rate to the Tracy–Widom laws for the largest eigenvalue of sample covariance matrices. The Annals of Applied Probability. Institute of Mathematical Statistics. https://doi.org/10.1214/22-aap1826
[Preprint]
View
| DOI
| Download Preprint (ext.)
| WoS
| arXiv
2023 | Published | Journal Article | IST-REx-ID: 14849 |

Cipolloni, G., Erdös, L., Schröder, D. J., & Xu, Y. (2023). On the rightmost eigenvalue of non-Hermitian random matrices. The Annals of Probability. Institute of Mathematical Statistics. https://doi.org/10.1214/23-aop1643
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2023 | Draft | Preprint | IST-REx-ID: 17173 |

Reker, J. (n.d.). Multi-point functional central limit theorem for Wigner Matrices. arXiv. https://doi.org/10.48550/arXiv.2307.11028
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv
2023 | Published | Journal Article | IST-REx-ID: 12683 |

Dubach, G., & Erdös, L. (2023). Dynamics of a rank-one perturbation of a Hermitian matrix. Electronic Communications in Probability. Institute of Mathematical Statistics. https://doi.org/10.1214/23-ECP516
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2023 | Published | Journal Article | IST-REx-ID: 10405 |

Cipolloni, G., Erdös, L., & Schröder, D. J. (2023). Central limit theorem for linear eigenvalue statistics of non-Hermitian random matrices. Communications on Pure and Applied Mathematics. Wiley. https://doi.org/10.1002/cpa.22028
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2023 | Published | Journal Article | IST-REx-ID: 14343 |

Cipolloni, G., Erdös, L., Henheik, S. J., & Kolupaiev, O. (2023). Gaussian fluctuations in the equipartition principle for Wigner matrices. Forum of Mathematics, Sigma. Cambridge University Press. https://doi.org/10.1017/fms.2023.70
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv