Please note that LibreCat no longer supports Internet Explorer versions 8 or 9 (or earlier).

We recommend upgrading to the latest Internet Explorer, Google Chrome, or Firefox.




154 Publications

2024 | Draft | Preprint | IST-REx-ID: 19545 | OA
Cipolloni, Giorgio, Eigenstate thermalisation at the edge for Wigner matrices. arXiv. 2024
[Preprint] View | Files available | DOI | Download Preprint (ext.) | arXiv
 
2024 | Draft | Preprint | IST-REx-ID: 19547 | OA
Erdös, László, Cusp universality for correlated random matrices. arXiv. 2024
[Preprint] View | Files available | DOI | Download Preprint (ext.) | arXiv
 
2024 | Draft | Preprint | IST-REx-ID: 19551 | OA
Henheik, Sven Joscha, Response theory for locally gapped systems. arXiv. 2024
[Preprint] View | Files available | DOI | Download Preprint (ext.) | arXiv
 
2024 | Published | Journal Article | IST-REx-ID: 14542 | OA
Henheik, S. J., Lauritsen, A. B., & Roos, B. (2024). Universality in low-dimensional BCS theory. Reviews in Mathematical Physics. World Scientific Publishing. https://doi.org/10.1142/s0129055x2360005x
[Published Version] View | Files available | DOI | arXiv
 
2024 | Published | Thesis | IST-REx-ID: 17164 | OA
Reker, J. (2024). Central limit theorems for random matrices: From resolvents to free probability. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:17164
[Published Version] View | Files available | DOI
 
2024 | Published | Journal Article | IST-REx-ID: 17049 | OA
Cipolloni, G., Erdös, L., Henheik, S. J., & Schröder, D. J. (2024). Optimal lower bound on eigenvector overlaps for non-Hermitian random matrices. Journal of Functional Analysis. Elsevier. https://doi.org/10.1016/j.jfa.2024.110495
[Published Version] View | Files available | DOI
 
2023 | Published | Journal Article | IST-REx-ID: 11741 | OA
Cipolloni, G., Erdös, L., & Schröder, D. J. (2023). Quenched universality for deformed Wigner matrices. Probability Theory and Related Fields. Springer Nature. https://doi.org/10.1007/s00440-022-01156-7
[Published Version] View | Files available | DOI | WoS | arXiv
 
2023 | Published | Journal Article | IST-REx-ID: 17079 | OA
Serebryakov, A., Simm, N., & Dubach, G. (2023). Characteristic polynomials of random truncations: Moments, duality and asymptotics. Random Matrices: Theory and Applications. World Scientific Publishing. https://doi.org/10.1142/s2010326322500496
[Preprint] View | DOI | Download Preprint (ext.) | arXiv
 
2023 | Published | Journal Article | IST-REx-ID: 12761 | OA
Cipolloni, G., Erdös, L., & Schröder, D. J. (2023). Functional central limit theorems for Wigner matrices. Annals of Applied Probability. Institute of Mathematical Statistics. https://doi.org/10.1214/22-AAP1820
[Preprint] View | DOI | Download Preprint (ext.) | WoS | arXiv
 
2023 | Published | Journal Article | IST-REx-ID: 12707 | OA
Erdös, L., & Xu, Y. (2023). Small deviation estimates for the largest eigenvalue of Wigner matrices. Bernoulli. Bernoulli Society for Mathematical Statistics and Probability. https://doi.org/10.3150/22-BEJ1490
[Preprint] View | DOI | Download Preprint (ext.) | WoS | arXiv
 
2023 | Published | Journal Article | IST-REx-ID: 12792 | OA
Cipolloni, G., Erdös, L., & Schröder, D. J. (2023). On the spectral form factor for random matrices. Communications in Mathematical Physics. Springer Nature. https://doi.org/10.1007/s00220-023-04692-y
[Published Version] View | Files available | DOI | WoS
 
2023 | Published | Journal Article | IST-REx-ID: 14780 | OA
Ding, X., & Ji, H. C. (2023). Spiked multiplicative random matrices and principal components. Stochastic Processes and Their Applications. Elsevier. https://doi.org/10.1016/j.spa.2023.05.009
[Published Version] View | Files available | DOI | WoS | arXiv
 
2023 | Published | Journal Article | IST-REx-ID: 14667 | OA
Erdös, L., & Ji, H. C. (2023). Functional CLT for non-Hermitian random matrices. Annales de l’institut Henri Poincare (B) Probability and Statistics. Institute of Mathematical Statistics. https://doi.org/10.1214/22-AIHP1304
[Preprint] View | DOI | Download Preprint (ext.) | arXiv
 
2023 | Published | Journal Article | IST-REx-ID: 14750 | OA
Ding, X., & Ji, H. C. (2023). Local laws for multiplication of random matrices. The Annals of Applied Probability. Institute of Mathematical Statistics. https://doi.org/10.1214/22-aap1882
[Preprint] View | DOI | Download Preprint (ext.) | arXiv
 
2023 | Published | Journal Article | IST-REx-ID: 14775 | OA
Schnelli, K., & Xu, Y. (2023). Convergence rate to the Tracy–Widom laws for the largest eigenvalue of sample covariance matrices. The Annals of Applied Probability. Institute of Mathematical Statistics. https://doi.org/10.1214/22-aap1826
[Preprint] View | DOI | Download Preprint (ext.) | WoS | arXiv
 
2023 | Published | Journal Article | IST-REx-ID: 14849 | OA
Cipolloni, G., Erdös, L., Schröder, D. J., & Xu, Y. (2023). On the rightmost eigenvalue of non-Hermitian random matrices. The Annals of Probability. Institute of Mathematical Statistics. https://doi.org/10.1214/23-aop1643
[Preprint] View | DOI | Download Preprint (ext.) | arXiv
 
2023 | Draft | Preprint | IST-REx-ID: 17173 | OA
Reker, J. (n.d.). Multi-point functional central limit theorem for Wigner Matrices. arXiv. https://doi.org/10.48550/arXiv.2307.11028
[Preprint] View | Files available | DOI | Download Preprint (ext.) | arXiv
 
2023 | Published | Journal Article | IST-REx-ID: 12683 | OA
Dubach, G., & Erdös, L. (2023). Dynamics of a rank-one perturbation of a Hermitian matrix. Electronic Communications in Probability. Institute of Mathematical Statistics. https://doi.org/10.1214/23-ECP516
[Published Version] View | Files available | DOI | WoS | arXiv
 
2023 | Published | Journal Article | IST-REx-ID: 10405 | OA
Cipolloni, G., Erdös, L., & Schröder, D. J. (2023). Central limit theorem for linear eigenvalue statistics of non-Hermitian random matrices. Communications on Pure and Applied Mathematics. Wiley. https://doi.org/10.1002/cpa.22028
[Published Version] View | Files available | DOI | WoS | arXiv
 
2023 | Published | Journal Article | IST-REx-ID: 14343 | OA
Cipolloni, G., Erdös, L., Henheik, S. J., & Kolupaiev, O. (2023). Gaussian fluctuations in the equipartition principle for Wigner matrices. Forum of Mathematics, Sigma. Cambridge University Press. https://doi.org/10.1017/fms.2023.70
[Published Version] View | Files available | DOI | WoS | arXiv
 

Search

Filter Publications

Display / Sort

Citation Style: APA

Export / Embed