Sebastian Hensel
Graduate School
Fischer Group
11 Publications
2024 | Published | Journal Article | IST-REx-ID: 18926 |

Hensel, S., & Laux, T. (2024). BV solutions for mean curvature flow with constant angle: Allen-Cahn approximation and weak-strong uniqueness. Indiana University Mathematics Journal. Indiana University Mathematics Journal. https://doi.org/10.1512/iumj.2024.73.9701
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2023 | Published | Journal Article | IST-REx-ID: 13043 |

Hensel, S., & Laux, T. (2023). Weak-strong uniqueness for the mean curvature flow of double bubbles. Interfaces and Free Boundaries. EMS Press. https://doi.org/10.4171/IFB/484
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2022 | Published | Journal Article | IST-REx-ID: 11842 |

Hensel, S., & Marveggio, A. (2022). Weak-strong uniqueness for the Navier–Stokes equation for two fluids with ninety degree contact angle and same viscosities. Journal of Mathematical Fluid Mechanics. Springer Nature. https://doi.org/10.1007/s00021-022-00722-2
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2022 | Published | Journal Article | IST-REx-ID: 12079 |

Hensel, S., & Moser, M. (2022). Convergence rates for the Allen–Cahn equation with boundary contact energy: The non-perturbative regime. Calculus of Variations and Partial Differential Equations. Springer Nature. https://doi.org/10.1007/s00526-022-02307-3
[Published Version]
View
| Files available
| DOI
| WoS
2021 | Submitted | Preprint | IST-REx-ID: 10011 |

Hensel, S., & Laux, T. (n.d.). A new varifold solution concept for mean curvature flow: Convergence of the Allen-Cahn equation and weak-strong uniqueness. arXiv. https://doi.org/10.48550/arXiv.2109.04233
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2021 | Published | Journal Article | IST-REx-ID: 9307 |

Hensel, S. (2021). Finite time extinction for the 1D stochastic porous medium equation with transport noise. Stochastics and Partial Differential Equations: Analysis and Computations. Springer Nature. https://doi.org/10.1007/s40072-021-00188-9
[Published Version]
View
| Files available
| DOI
| WoS
2021 | Published | Thesis | IST-REx-ID: 10007 |

Hensel, S. (2021). Curvature driven interface evolution: Uniqueness properties of weak solution concepts. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:10007
[Published Version]
View
| Files available
| DOI
2021 | Draft | Preprint | IST-REx-ID: 10013 |

Hensel, S., & Laux, T. (n.d.). Weak-strong uniqueness for the mean curvature flow of double bubbles. arXiv. https://doi.org/10.48550/arXiv.2108.01733
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv
2020 | Published | Journal Article | IST-REx-ID: 9196
Hensel, S., & Rosati, T. (2020). Modelled distributions of Triebel–Lizorkin type. Studia Mathematica. Instytut Matematyczny. https://doi.org/10.4064/sm180411-11-2
[Preprint]
View
| DOI
| WoS
| arXiv
2020 | Published | Journal Article | IST-REx-ID: 7489 |

Fischer, J. L., & Hensel, S. (2020). Weak–strong uniqueness for the Navier–Stokes equation for two fluids with surface tension. Archive for Rational Mechanics and Analysis. Springer Nature. https://doi.org/10.1007/s00205-019-01486-2
[Published Version]
View
| Files available
| DOI
| WoS
2020 | Draft | Preprint | IST-REx-ID: 10012 |

Fischer, J. L., Hensel, S., Laux, T., & Simon, T. (n.d.). The local structure of the energy landscape in multiphase mean curvature flow: weak-strong uniqueness and stability of evolutions. arXiv. https://doi.org/10.48550/arXiv.2003.05478
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv
Grants
11 Publications
2024 | Published | Journal Article | IST-REx-ID: 18926 |

Hensel, S., & Laux, T. (2024). BV solutions for mean curvature flow with constant angle: Allen-Cahn approximation and weak-strong uniqueness. Indiana University Mathematics Journal. Indiana University Mathematics Journal. https://doi.org/10.1512/iumj.2024.73.9701
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2023 | Published | Journal Article | IST-REx-ID: 13043 |

Hensel, S., & Laux, T. (2023). Weak-strong uniqueness for the mean curvature flow of double bubbles. Interfaces and Free Boundaries. EMS Press. https://doi.org/10.4171/IFB/484
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2022 | Published | Journal Article | IST-REx-ID: 11842 |

Hensel, S., & Marveggio, A. (2022). Weak-strong uniqueness for the Navier–Stokes equation for two fluids with ninety degree contact angle and same viscosities. Journal of Mathematical Fluid Mechanics. Springer Nature. https://doi.org/10.1007/s00021-022-00722-2
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2022 | Published | Journal Article | IST-REx-ID: 12079 |

Hensel, S., & Moser, M. (2022). Convergence rates for the Allen–Cahn equation with boundary contact energy: The non-perturbative regime. Calculus of Variations and Partial Differential Equations. Springer Nature. https://doi.org/10.1007/s00526-022-02307-3
[Published Version]
View
| Files available
| DOI
| WoS
2021 | Submitted | Preprint | IST-REx-ID: 10011 |

Hensel, S., & Laux, T. (n.d.). A new varifold solution concept for mean curvature flow: Convergence of the Allen-Cahn equation and weak-strong uniqueness. arXiv. https://doi.org/10.48550/arXiv.2109.04233
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2021 | Published | Journal Article | IST-REx-ID: 9307 |

Hensel, S. (2021). Finite time extinction for the 1D stochastic porous medium equation with transport noise. Stochastics and Partial Differential Equations: Analysis and Computations. Springer Nature. https://doi.org/10.1007/s40072-021-00188-9
[Published Version]
View
| Files available
| DOI
| WoS
2021 | Published | Thesis | IST-REx-ID: 10007 |

Hensel, S. (2021). Curvature driven interface evolution: Uniqueness properties of weak solution concepts. Institute of Science and Technology Austria. https://doi.org/10.15479/at:ista:10007
[Published Version]
View
| Files available
| DOI
2021 | Draft | Preprint | IST-REx-ID: 10013 |

Hensel, S., & Laux, T. (n.d.). Weak-strong uniqueness for the mean curvature flow of double bubbles. arXiv. https://doi.org/10.48550/arXiv.2108.01733
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv
2020 | Published | Journal Article | IST-REx-ID: 9196
Hensel, S., & Rosati, T. (2020). Modelled distributions of Triebel–Lizorkin type. Studia Mathematica. Instytut Matematyczny. https://doi.org/10.4064/sm180411-11-2
[Preprint]
View
| DOI
| WoS
| arXiv
2020 | Published | Journal Article | IST-REx-ID: 7489 |

Fischer, J. L., & Hensel, S. (2020). Weak–strong uniqueness for the Navier–Stokes equation for two fluids with surface tension. Archive for Rational Mechanics and Analysis. Springer Nature. https://doi.org/10.1007/s00205-019-01486-2
[Published Version]
View
| Files available
| DOI
| WoS
2020 | Draft | Preprint | IST-REx-ID: 10012 |

Fischer, J. L., Hensel, S., Laux, T., & Simon, T. (n.d.). The local structure of the energy landscape in multiphase mean curvature flow: weak-strong uniqueness and stability of evolutions. arXiv. https://doi.org/10.48550/arXiv.2003.05478
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv