Sebastian Hensel
Graduate School
Fischer Group
11 Publications
2024 | Published | Journal Article | IST-REx-ID: 18926 |

BV solutions for mean curvature flow with constant angle: Allen-Cahn approximation and weak-strong uniqueness
S. Hensel, T. Laux, Indiana University Mathematics Journal 73 (2024) 111–148.
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
S. Hensel, T. Laux, Indiana University Mathematics Journal 73 (2024) 111–148.
2023 | Published | Journal Article | IST-REx-ID: 13043 |

Weak-strong uniqueness for the mean curvature flow of double bubbles
S. Hensel, T. Laux, Interfaces and Free Boundaries 25 (2023) 37–107.
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
S. Hensel, T. Laux, Interfaces and Free Boundaries 25 (2023) 37–107.
2022 | Published | Journal Article | IST-REx-ID: 11842 |

Weak-strong uniqueness for the Navier–Stokes equation for two fluids with ninety degree contact angle and same viscosities
S. Hensel, A. Marveggio, Journal of Mathematical Fluid Mechanics 24 (2022).
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
S. Hensel, A. Marveggio, Journal of Mathematical Fluid Mechanics 24 (2022).
2022 | Published | Journal Article | IST-REx-ID: 12079 |

Convergence rates for the Allen–Cahn equation with boundary contact energy: The non-perturbative regime
S. Hensel, M. Moser, Calculus of Variations and Partial Differential Equations 61 (2022).
[Published Version]
View
| Files available
| DOI
| WoS
S. Hensel, M. Moser, Calculus of Variations and Partial Differential Equations 61 (2022).
2021 | Submitted | Preprint | IST-REx-ID: 10011 |

A new varifold solution concept for mean curvature flow: Convergence of the Allen-Cahn equation and weak-strong uniqueness
S. Hensel, T. Laux, ArXiv (n.d.).
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
S. Hensel, T. Laux, ArXiv (n.d.).
2021 | Published | Journal Article | IST-REx-ID: 9307 |

Finite time extinction for the 1D stochastic porous medium equation with transport noise
S. Hensel, Stochastics and Partial Differential Equations: Analysis and Computations 9 (2021) 892–939.
[Published Version]
View
| Files available
| DOI
| WoS
S. Hensel, Stochastics and Partial Differential Equations: Analysis and Computations 9 (2021) 892–939.
2021 | Published | Thesis | IST-REx-ID: 10007 |

Curvature driven interface evolution: Uniqueness properties of weak solution concepts
S. Hensel, Curvature Driven Interface Evolution: Uniqueness Properties of Weak Solution Concepts, Institute of Science and Technology Austria, 2021.
[Published Version]
View
| Files available
| DOI
S. Hensel, Curvature Driven Interface Evolution: Uniqueness Properties of Weak Solution Concepts, Institute of Science and Technology Austria, 2021.
2021 | Draft | Preprint | IST-REx-ID: 10013 |

Weak-strong uniqueness for the mean curvature flow of double bubbles
S. Hensel, T. Laux, ArXiv (n.d.).
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv
S. Hensel, T. Laux, ArXiv (n.d.).
2020 | Published | Journal Article | IST-REx-ID: 9196
Modelled distributions of Triebel–Lizorkin type
S. Hensel, T. Rosati, Studia Mathematica 252 (2020) 251–297.
[Preprint]
View
| DOI
| WoS
| arXiv
S. Hensel, T. Rosati, Studia Mathematica 252 (2020) 251–297.
2020 | Published | Journal Article | IST-REx-ID: 7489 |

Weak–strong uniqueness for the Navier–Stokes equation for two fluids with surface tension
J.L. Fischer, S. Hensel, Archive for Rational Mechanics and Analysis 236 (2020) 967–1087.
[Published Version]
View
| Files available
| DOI
| WoS
J.L. Fischer, S. Hensel, Archive for Rational Mechanics and Analysis 236 (2020) 967–1087.
2020 | Draft | Preprint | IST-REx-ID: 10012 |

The local structure of the energy landscape in multiphase mean curvature flow: weak-strong uniqueness and stability of evolutions
J.L. Fischer, S. Hensel, T. Laux, T. Simon, ArXiv (n.d.).
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv
J.L. Fischer, S. Hensel, T. Laux, T. Simon, ArXiv (n.d.).
Search
Filter Publications
Display / Sort
Export / Embed
Grants
11 Publications
2024 | Published | Journal Article | IST-REx-ID: 18926 |

BV solutions for mean curvature flow with constant angle: Allen-Cahn approximation and weak-strong uniqueness
S. Hensel, T. Laux, Indiana University Mathematics Journal 73 (2024) 111–148.
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
S. Hensel, T. Laux, Indiana University Mathematics Journal 73 (2024) 111–148.
2023 | Published | Journal Article | IST-REx-ID: 13043 |

Weak-strong uniqueness for the mean curvature flow of double bubbles
S. Hensel, T. Laux, Interfaces and Free Boundaries 25 (2023) 37–107.
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
S. Hensel, T. Laux, Interfaces and Free Boundaries 25 (2023) 37–107.
2022 | Published | Journal Article | IST-REx-ID: 11842 |

Weak-strong uniqueness for the Navier–Stokes equation for two fluids with ninety degree contact angle and same viscosities
S. Hensel, A. Marveggio, Journal of Mathematical Fluid Mechanics 24 (2022).
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
S. Hensel, A. Marveggio, Journal of Mathematical Fluid Mechanics 24 (2022).
2022 | Published | Journal Article | IST-REx-ID: 12079 |

Convergence rates for the Allen–Cahn equation with boundary contact energy: The non-perturbative regime
S. Hensel, M. Moser, Calculus of Variations and Partial Differential Equations 61 (2022).
[Published Version]
View
| Files available
| DOI
| WoS
S. Hensel, M. Moser, Calculus of Variations and Partial Differential Equations 61 (2022).
2021 | Submitted | Preprint | IST-REx-ID: 10011 |

A new varifold solution concept for mean curvature flow: Convergence of the Allen-Cahn equation and weak-strong uniqueness
S. Hensel, T. Laux, ArXiv (n.d.).
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
S. Hensel, T. Laux, ArXiv (n.d.).
2021 | Published | Journal Article | IST-REx-ID: 9307 |

Finite time extinction for the 1D stochastic porous medium equation with transport noise
S. Hensel, Stochastics and Partial Differential Equations: Analysis and Computations 9 (2021) 892–939.
[Published Version]
View
| Files available
| DOI
| WoS
S. Hensel, Stochastics and Partial Differential Equations: Analysis and Computations 9 (2021) 892–939.
2021 | Published | Thesis | IST-REx-ID: 10007 |

Curvature driven interface evolution: Uniqueness properties of weak solution concepts
S. Hensel, Curvature Driven Interface Evolution: Uniqueness Properties of Weak Solution Concepts, Institute of Science and Technology Austria, 2021.
[Published Version]
View
| Files available
| DOI
S. Hensel, Curvature Driven Interface Evolution: Uniqueness Properties of Weak Solution Concepts, Institute of Science and Technology Austria, 2021.
2021 | Draft | Preprint | IST-REx-ID: 10013 |

Weak-strong uniqueness for the mean curvature flow of double bubbles
S. Hensel, T. Laux, ArXiv (n.d.).
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv
S. Hensel, T. Laux, ArXiv (n.d.).
2020 | Published | Journal Article | IST-REx-ID: 9196
Modelled distributions of Triebel–Lizorkin type
S. Hensel, T. Rosati, Studia Mathematica 252 (2020) 251–297.
[Preprint]
View
| DOI
| WoS
| arXiv
S. Hensel, T. Rosati, Studia Mathematica 252 (2020) 251–297.
2020 | Published | Journal Article | IST-REx-ID: 7489 |

Weak–strong uniqueness for the Navier–Stokes equation for two fluids with surface tension
J.L. Fischer, S. Hensel, Archive for Rational Mechanics and Analysis 236 (2020) 967–1087.
[Published Version]
View
| Files available
| DOI
| WoS
J.L. Fischer, S. Hensel, Archive for Rational Mechanics and Analysis 236 (2020) 967–1087.
2020 | Draft | Preprint | IST-REx-ID: 10012 |

The local structure of the energy landscape in multiphase mean curvature flow: weak-strong uniqueness and stability of evolutions
J.L. Fischer, S. Hensel, T. Laux, T. Simon, ArXiv (n.d.).
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv
J.L. Fischer, S. Hensel, T. Laux, T. Simon, ArXiv (n.d.).