Sebastian Hensel
Graduate School
Fischer Group
10 Publications
2023 | Published | Journal Article | IST-REx-ID: 13043 |
Hensel S, Laux T. Weak-strong uniqueness for the mean curvature flow of double bubbles. Interfaces and Free Boundaries. 2023;25(1):37-107. doi:10.4171/IFB/484
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2022 | Published | Journal Article | IST-REx-ID: 11842 |
Hensel S, Marveggio A. Weak-strong uniqueness for the Navier–Stokes equation for two fluids with ninety degree contact angle and same viscosities. Journal of Mathematical Fluid Mechanics. 2022;24(3). doi:10.1007/s00021-022-00722-2
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2022 | Published | Journal Article | IST-REx-ID: 12079 |
Hensel S, Moser M. Convergence rates for the Allen–Cahn equation with boundary contact energy: The non-perturbative regime. Calculus of Variations and Partial Differential Equations. 2022;61(6). doi:10.1007/s00526-022-02307-3
[Published Version]
View
| Files available
| DOI
| WoS
2021 | Submitted | Preprint | IST-REx-ID: 10011 |
Hensel S, Laux T. A new varifold solution concept for mean curvature flow: Convergence of the Allen-Cahn equation and weak-strong uniqueness. arXiv. doi:10.48550/arXiv.2109.04233
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2021 | Published | Journal Article | IST-REx-ID: 9307 |
Hensel S. Finite time extinction for the 1D stochastic porous medium equation with transport noise. Stochastics and Partial Differential Equations: Analysis and Computations. 2021;9:892–939. doi:10.1007/s40072-021-00188-9
[Published Version]
View
| Files available
| DOI
| WoS
2021 | Published | Thesis | IST-REx-ID: 10007 |
Hensel S. Curvature driven interface evolution: Uniqueness properties of weak solution concepts. 2021. doi:10.15479/at:ista:10007
[Published Version]
View
| Files available
| DOI
2021 | Submitted | Preprint | IST-REx-ID: 10013 |
Hensel S, Laux T. Weak-strong uniqueness for the mean curvature flow of double bubbles. arXiv. doi:10.48550/arXiv.2108.01733
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv
2020 | Published | Journal Article | IST-REx-ID: 9196
Hensel S, Rosati T. Modelled distributions of Triebel–Lizorkin type. Studia Mathematica. 2020;252(3):251-297. doi:10.4064/sm180411-11-2
[Preprint]
View
| DOI
| WoS
| arXiv
2020 | Published | Journal Article | IST-REx-ID: 7489 |
Fischer JL, Hensel S. Weak–strong uniqueness for the Navier–Stokes equation for two fluids with surface tension. Archive for Rational Mechanics and Analysis. 2020;236:967-1087. doi:10.1007/s00205-019-01486-2
[Published Version]
View
| Files available
| DOI
| WoS
2020 | Submitted | Preprint | IST-REx-ID: 10012 |
Fischer JL, Hensel S, Laux T, Simon T. The local structure of the energy landscape in multiphase mean curvature flow: weak-strong uniqueness and stability of evolutions. arXiv.
[Preprint]
View
| Files available
| Download Preprint (ext.)
| arXiv
Grants
10 Publications
2023 | Published | Journal Article | IST-REx-ID: 13043 |
Hensel S, Laux T. Weak-strong uniqueness for the mean curvature flow of double bubbles. Interfaces and Free Boundaries. 2023;25(1):37-107. doi:10.4171/IFB/484
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2022 | Published | Journal Article | IST-REx-ID: 11842 |
Hensel S, Marveggio A. Weak-strong uniqueness for the Navier–Stokes equation for two fluids with ninety degree contact angle and same viscosities. Journal of Mathematical Fluid Mechanics. 2022;24(3). doi:10.1007/s00021-022-00722-2
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2022 | Published | Journal Article | IST-REx-ID: 12079 |
Hensel S, Moser M. Convergence rates for the Allen–Cahn equation with boundary contact energy: The non-perturbative regime. Calculus of Variations and Partial Differential Equations. 2022;61(6). doi:10.1007/s00526-022-02307-3
[Published Version]
View
| Files available
| DOI
| WoS
2021 | Submitted | Preprint | IST-REx-ID: 10011 |
Hensel S, Laux T. A new varifold solution concept for mean curvature flow: Convergence of the Allen-Cahn equation and weak-strong uniqueness. arXiv. doi:10.48550/arXiv.2109.04233
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2021 | Published | Journal Article | IST-REx-ID: 9307 |
Hensel S. Finite time extinction for the 1D stochastic porous medium equation with transport noise. Stochastics and Partial Differential Equations: Analysis and Computations. 2021;9:892–939. doi:10.1007/s40072-021-00188-9
[Published Version]
View
| Files available
| DOI
| WoS
2021 | Published | Thesis | IST-REx-ID: 10007 |
Hensel S. Curvature driven interface evolution: Uniqueness properties of weak solution concepts. 2021. doi:10.15479/at:ista:10007
[Published Version]
View
| Files available
| DOI
2021 | Submitted | Preprint | IST-REx-ID: 10013 |
Hensel S, Laux T. Weak-strong uniqueness for the mean curvature flow of double bubbles. arXiv. doi:10.48550/arXiv.2108.01733
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv
2020 | Published | Journal Article | IST-REx-ID: 9196
Hensel S, Rosati T. Modelled distributions of Triebel–Lizorkin type. Studia Mathematica. 2020;252(3):251-297. doi:10.4064/sm180411-11-2
[Preprint]
View
| DOI
| WoS
| arXiv
2020 | Published | Journal Article | IST-REx-ID: 7489 |
Fischer JL, Hensel S. Weak–strong uniqueness for the Navier–Stokes equation for two fluids with surface tension. Archive for Rational Mechanics and Analysis. 2020;236:967-1087. doi:10.1007/s00205-019-01486-2
[Published Version]
View
| Files available
| DOI
| WoS
2020 | Submitted | Preprint | IST-REx-ID: 10012 |
Fischer JL, Hensel S, Laux T, Simon T. The local structure of the energy landscape in multiphase mean curvature flow: weak-strong uniqueness and stability of evolutions. arXiv.
[Preprint]
View
| Files available
| Download Preprint (ext.)
| arXiv