Sebastian Hensel
Graduate School
Fischer Group
11 Publications
2024 | Published | Journal Article | IST-REx-ID: 18926 |

Hensel, Sebastian, and Tim Laux. “BV Solutions for Mean Curvature Flow with Constant Angle: Allen-Cahn Approximation and Weak-Strong Uniqueness.” Indiana University Mathematics Journal, vol. 73, no. 1, Indiana University Mathematics Journal, 2024, pp. 111–48, doi:10.1512/iumj.2024.73.9701.
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2023 | Published | Journal Article | IST-REx-ID: 13043 |

Hensel, Sebastian, and Tim Laux. “Weak-Strong Uniqueness for the Mean Curvature Flow of Double Bubbles.” Interfaces and Free Boundaries, vol. 25, no. 1, EMS Press, 2023, pp. 37–107, doi:10.4171/IFB/484.
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2022 | Published | Journal Article | IST-REx-ID: 11842 |

Hensel, Sebastian, and Alice Marveggio. “Weak-Strong Uniqueness for the Navier–Stokes Equation for Two Fluids with Ninety Degree Contact Angle and Same Viscosities.” Journal of Mathematical Fluid Mechanics, vol. 24, no. 3, 93, Springer Nature, 2022, doi:10.1007/s00021-022-00722-2.
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2022 | Published | Journal Article | IST-REx-ID: 12079 |

Hensel, Sebastian, and Maximilian Moser. “Convergence Rates for the Allen–Cahn Equation with Boundary Contact Energy: The Non-Perturbative Regime.” Calculus of Variations and Partial Differential Equations, vol. 61, no. 6, 201, Springer Nature, 2022, doi:10.1007/s00526-022-02307-3.
[Published Version]
View
| Files available
| DOI
| WoS
2021 | Submitted | Preprint | IST-REx-ID: 10011 |

Hensel, Sebastian, and Tim Laux. “A New Varifold Solution Concept for Mean Curvature Flow: Convergence of the Allen-Cahn Equation and Weak-Strong Uniqueness.” ArXiv, 2109.04233, doi:10.48550/arXiv.2109.04233.
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2021 | Published | Journal Article | IST-REx-ID: 9307 |

Hensel, Sebastian. “Finite Time Extinction for the 1D Stochastic Porous Medium Equation with Transport Noise.” Stochastics and Partial Differential Equations: Analysis and Computations, vol. 9, Springer Nature, 2021, pp. 892–939, doi:10.1007/s40072-021-00188-9.
[Published Version]
View
| Files available
| DOI
| WoS
2021 | Published | Thesis | IST-REx-ID: 10007 |

Hensel, Sebastian. Curvature Driven Interface Evolution: Uniqueness Properties of Weak Solution Concepts. Institute of Science and Technology Austria, 2021, doi:10.15479/at:ista:10007.
[Published Version]
View
| Files available
| DOI
2021 | Draft | Preprint | IST-REx-ID: 10013 |

Hensel, Sebastian, and Tim Laux. “Weak-Strong Uniqueness for the Mean Curvature Flow of Double Bubbles.” ArXiv, 2108.01733, doi:10.48550/arXiv.2108.01733.
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv
2020 | Published | Journal Article | IST-REx-ID: 9196
Hensel, Sebastian, and Tommaso Rosati. “Modelled Distributions of Triebel–Lizorkin Type.” Studia Mathematica, vol. 252, no. 3, Instytut Matematyczny, 2020, pp. 251–97, doi:10.4064/sm180411-11-2.
[Preprint]
View
| DOI
| WoS
| arXiv
2020 | Published | Journal Article | IST-REx-ID: 7489 |

Fischer, Julian L., and Sebastian Hensel. “Weak–Strong Uniqueness for the Navier–Stokes Equation for Two Fluids with Surface Tension.” Archive for Rational Mechanics and Analysis, vol. 236, Springer Nature, 2020, pp. 967–1087, doi:10.1007/s00205-019-01486-2.
[Published Version]
View
| Files available
| DOI
| WoS
2020 | Draft | Preprint | IST-REx-ID: 10012 |

Fischer, Julian L., et al. “The Local Structure of the Energy Landscape in Multiphase Mean Curvature Flow: Weak-Strong Uniqueness and Stability of Evolutions.” ArXiv, 2003.05478, doi:10.48550/arXiv.2003.05478.
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv
Grants
11 Publications
2024 | Published | Journal Article | IST-REx-ID: 18926 |

Hensel, Sebastian, and Tim Laux. “BV Solutions for Mean Curvature Flow with Constant Angle: Allen-Cahn Approximation and Weak-Strong Uniqueness.” Indiana University Mathematics Journal, vol. 73, no. 1, Indiana University Mathematics Journal, 2024, pp. 111–48, doi:10.1512/iumj.2024.73.9701.
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2023 | Published | Journal Article | IST-REx-ID: 13043 |

Hensel, Sebastian, and Tim Laux. “Weak-Strong Uniqueness for the Mean Curvature Flow of Double Bubbles.” Interfaces and Free Boundaries, vol. 25, no. 1, EMS Press, 2023, pp. 37–107, doi:10.4171/IFB/484.
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2022 | Published | Journal Article | IST-REx-ID: 11842 |

Hensel, Sebastian, and Alice Marveggio. “Weak-Strong Uniqueness for the Navier–Stokes Equation for Two Fluids with Ninety Degree Contact Angle and Same Viscosities.” Journal of Mathematical Fluid Mechanics, vol. 24, no. 3, 93, Springer Nature, 2022, doi:10.1007/s00021-022-00722-2.
[Published Version]
View
| Files available
| DOI
| WoS
| arXiv
2022 | Published | Journal Article | IST-REx-ID: 12079 |

Hensel, Sebastian, and Maximilian Moser. “Convergence Rates for the Allen–Cahn Equation with Boundary Contact Energy: The Non-Perturbative Regime.” Calculus of Variations and Partial Differential Equations, vol. 61, no. 6, 201, Springer Nature, 2022, doi:10.1007/s00526-022-02307-3.
[Published Version]
View
| Files available
| DOI
| WoS
2021 | Submitted | Preprint | IST-REx-ID: 10011 |

Hensel, Sebastian, and Tim Laux. “A New Varifold Solution Concept for Mean Curvature Flow: Convergence of the Allen-Cahn Equation and Weak-Strong Uniqueness.” ArXiv, 2109.04233, doi:10.48550/arXiv.2109.04233.
[Preprint]
View
| DOI
| Download Preprint (ext.)
| arXiv
2021 | Published | Journal Article | IST-REx-ID: 9307 |

Hensel, Sebastian. “Finite Time Extinction for the 1D Stochastic Porous Medium Equation with Transport Noise.” Stochastics and Partial Differential Equations: Analysis and Computations, vol. 9, Springer Nature, 2021, pp. 892–939, doi:10.1007/s40072-021-00188-9.
[Published Version]
View
| Files available
| DOI
| WoS
2021 | Published | Thesis | IST-REx-ID: 10007 |

Hensel, Sebastian. Curvature Driven Interface Evolution: Uniqueness Properties of Weak Solution Concepts. Institute of Science and Technology Austria, 2021, doi:10.15479/at:ista:10007.
[Published Version]
View
| Files available
| DOI
2021 | Draft | Preprint | IST-REx-ID: 10013 |

Hensel, Sebastian, and Tim Laux. “Weak-Strong Uniqueness for the Mean Curvature Flow of Double Bubbles.” ArXiv, 2108.01733, doi:10.48550/arXiv.2108.01733.
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv
2020 | Published | Journal Article | IST-REx-ID: 9196
Hensel, Sebastian, and Tommaso Rosati. “Modelled Distributions of Triebel–Lizorkin Type.” Studia Mathematica, vol. 252, no. 3, Instytut Matematyczny, 2020, pp. 251–97, doi:10.4064/sm180411-11-2.
[Preprint]
View
| DOI
| WoS
| arXiv
2020 | Published | Journal Article | IST-REx-ID: 7489 |

Fischer, Julian L., and Sebastian Hensel. “Weak–Strong Uniqueness for the Navier–Stokes Equation for Two Fluids with Surface Tension.” Archive for Rational Mechanics and Analysis, vol. 236, Springer Nature, 2020, pp. 967–1087, doi:10.1007/s00205-019-01486-2.
[Published Version]
View
| Files available
| DOI
| WoS
2020 | Draft | Preprint | IST-REx-ID: 10012 |

Fischer, Julian L., et al. “The Local Structure of the Energy Landscape in Multiphase Mean Curvature Flow: Weak-Strong Uniqueness and Stability of Evolutions.” ArXiv, 2003.05478, doi:10.48550/arXiv.2003.05478.
[Preprint]
View
| Files available
| DOI
| Download Preprint (ext.)
| arXiv